PVDF-based sensing component: Effects of molecular weight and uniaxial stretching on electro-mechanical capability

Martin Cvek, a Miroslav Mrlik, a, * Pavel Tofel, b Milan Masar a

aCentre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, Zlín 760 01, Czech Republic

bBrno University of Technology, Dept. of Physics, Faculty of Electrical Engineering and Communication, Technická 10, Brno 616 00, Czech Republic

ABSTRACT

Poly (vinylidene fluoride) (PVDF) is a piezoelectric material owing to desirable properties to serve as an efficient sensing component to mechanical stimulation. Being a polymorph of several structural phases (α, β, γ, δ, and ε), the electro-active β-phase is of importance to achieve high sensing capability. The inducing the β-phase can be performed via different routes including the incorporation of variety of nanomaterials and/or poling in external electric fields. The enhancements in the piezo-activity can be also done through a simple uniaxial stretching. In this study, the PVDF sheets differing in the molecular weights were stretched at the elevated temperature to various elongations. The correlation between their molecular and processing parameters was investigated using the FTIR and XRD analyzes. After the stretching, the enhanced piezoelectric β-phase content was found due to aligned structure of the electro-active crystallites. The electro-mechanical capability was analyzed via investigation of d33 coefficient by Berlincourt method. The obtained data may be used in the optimization of the PVDF processing parameters in order to tailor the PVDF materials of high sensing capability serving as the sensing component exploiting the mechanical energy to electrical signal.

Keywords: crystallites; piezoactivity; polymorphism; power generator; stretching
ACKNOWLEDGEMENT

The authors gratefully acknowledge the Czech Science Foundation grant no. 19-17457S for the financial support.