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 A solution for thick plates on Winkler-Pasternak foundation using 

characteristic orthogonal polynomials (COPs) displacement functions 

was presented in this study. A shear deformation function was 

developed from Soldatos’ (1992) trigonometric function and the Ritz 

energy approach was used to determine the total potential energy of the 

thick plate on elastic foundation. This method presents a simple and 

efficient method where only definite integration is required to obtain 

solutions. Results for non-dimensional in-plane and out-of-plane 

displacements for simply supported (SSSS) thick plates were presented 

and was observed to converge with that of other third-order shear 

deformation theories (TSDT) available in literature. From the study, it 

was observed that the in-plane and out-of-plane displacements reduced 

generally as the foundation modulus of the soil increased and decreases 

as the span-depth ratio increased for each aspect ratio. Both the 

Winkler and Pasternak foundation parameters influenced the results 

obtained as the foundation modulus is dependent on these parameters. 

1. Introduction 

Many practical engineering systems such as pavement of highways, foundation slabs of 

buildings, etc can be related to the solution of plates resting on an elastic foundation. The 

relationship between all engineering infrastructure and their foundation soils is of great 

importance for designers, engineers and contractors (Nwaiwu et al., 2020). In the 

construction such engineering structures, the idea is to transfer superstructure load safely to 

the foundation (soil), hence an obvious interaction between the soil and the structure itself. 

Such a system leads to the consideration of soil-structure interaction. Soil-structure 

interaction concerns the response of the soil and the structure on it, especially when subjected 

to dynamic loads (Gaikwad and Shingade, 2020; NIST, 2012). Therefore, the stresses 

induced in the soil-structure system are largely dependent on the properties and behaviour of 

the soil and the structure under the applied load. 

A plate is said to be a flat structural component bound by two planes that are parallel to each 

other called faces and a cylindrical surface called an edge. Plates have wide applications in 

engineering structures including bridges, architectural structures, etc. They can be classified 
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as thick or thin depending on their thickness relative to their lateral dimensions. Thin plates 

can be analysed using the Kirchoff Classical Plate Theory (CPT) where the effect of 

transverse shear deformation is neglected. However as the plate becomes thicker, the effect of 

shear deformation becomes more important. In order to overcome the deficiency of the CPT, 

shear deformation theories have been proposed including higher-order shear deformation 

theory (HSDT), refined theory, trigonometric shear deformation theory (TSDT) amongst 

others (Ibearugblem and Ezeh, 2013; Ezeh et al., 2014). 

On the other hand soils can be analysed using any of these two approaches namely; the 

continuum approach (elastic, elastoplastic, anisotropic etc.) and the modeling approach 

(where the soil is modeled and model parameters are determined). Winkler (1867) proposed a 

one parameter elastic model where he considered the behavior of soils to be linear, and can 

be represented using independent discrete linear elastic springs. An identified problem with 

the Winkler model is the independent (uncoupled) behavior of the soil springs which does not 

represent the displacement behavior of typical soils under load (Ubani et al., 2020).  

 
Figure 1. Schematic representation of soil spring system (a) Coupled behavior (b) Uncoupled 

behavior (Ubani et al., 2020) 

Contrary to the Winkler model, Pasternak (1954) proposed a two parameter elastic model 

where he noted the existence of shear interaction among the spring elements, and that the 

load-deflection relationship is obtained by considering the vertical equilibrium of a shear 

layer. Both the Winkler model (Naderi and Saidi, 2011; Ozdemir, 2012; Aziz et al., 2013; Al-

Azzawi, 2016) and the Pasternak model (Malekzadeh, 2009; Hosseini et al., 2010; Thai and 

Choi, 2013; Akavci, 2014) have been used by past researchers to analyse thick plates on 

elastic foundation. However the use of characteristic orthogonal polynomials (COP) has not 

been used to analyse thick plates on elastic foundations. This research aims to fill that gap. 

2. Theoretical Framework 

The shear deformation shape function was derived from the Soldatos (1992) trigonometric 

shape function. The soldatos (1992) trigonometric shear function can be expressed as:  

𝑓(𝑧) = [𝑧𝑐𝑜𝑠ℎ (
1

2
) − 𝑡𝑠𝑖𝑛ℎ (

𝑧

𝑡
)] (1) 

In non-dimensional form; 𝑧 = 𝑠𝑡 

Where “s” is a non-dimensional parameter and “t” is the thickness of the plate. The 

trigonometric shear function was plotted graphically across a plate of unit thickness (−0.5 ≤ 𝑠 

≤ 0.5) with an interval of 0.025. The shear deformation shape function used in this study is 

the equation of the curve expressed in polynomial form; 𝑓(𝑧) = 𝑡 [(
𝑧

𝑡
) − 

13

10
(

𝑧

𝑡
)

3
] which can 

be simplified as; 𝑓(𝑧) = 𝑧 [1 −  
13

10
(

𝑧

𝑡
)

2
]. 



European Journal of Engineering Science and Technology, 4(4): 1-14, 2021 

3 

 

2.1. Assumptions 

It is assumed the out-of-plane displacement w, is only differentiable in x and y axes. 

Consequently the vertical strain, 𝜀𝑧 = 0, and the effect of the out-of-plane normal stress on the 

response of the plate is small with respect to the other stresses. Thus, it can be neglected (i.e 

𝜎𝑧 = 0. However, in contrast to the CPT, it is also assumed that the vertical line that is 

initially normal to the middle surface of the plate before bending becomes parabolic after 

bending. 

2.2. Kinematic Relations 

In-plane displacements, u and v are defined mathematically as; 

𝑢 =  𝑢𝑐 +  𝑢𝑠;  𝑣 =  𝑣𝑐 +  𝑣𝑠 (2) 

𝑢𝑠 and 𝑣𝑠 are the shear deformation components of the in-plane displacements and are defined 

mathematically as, 

𝑢𝑠 = 𝑓(𝑧) · ∅𝑥  ;   𝑣𝑠 = 𝑓(𝑧) · ∅𝑦 (3) 

Where; ∅𝑥   = shear rotation in x-direction and ∅𝑦 = shear rotation in y-direction 

According to the classical plate theory (CPT) the in–plane displacements, 𝑢𝑐 and 𝑣𝑐 can be 

expressed as; 

𝑢𝑐 = −𝑧𝜃𝑐𝑥 = −𝑧
𝑑𝑤

𝑑𝑥
;        𝑣𝑐 = −𝑧𝜃𝑐𝑦 = −𝑧

𝑑𝑤

𝑑𝑦
 (4) 

Therefore, 

𝑢 = −𝑧
∂𝑤

∂𝑥
+ 𝑓(𝑧) ⋅ ∅𝑥;     𝑣 = −𝑧

∂𝑤

∂𝑦
+ 𝑓(𝑧) ⋅ ∅𝑦 (5) 

2.3. Strain – Displacement Relations 

Strain–displacement relations suitable for an isotropic and homogenous material in three 

dimensions were developed by Ventsel and Krauthammer (2001) and applying the 

assumption that the vertical strain, 𝜀𝑧 = 0 to the strain – displacement we have; 

𝜺𝒙 =
d𝑢

𝑑𝑥
= −𝑧

∂2𝑤

∂𝑥2 + 𝑓(𝑧) ⋅
∂∅𝑥

∂𝑥
 ;  𝜺𝒚 =

𝑑𝑣

𝑑𝑦
= −𝑧

∂2𝑤

∂𝑦2 + 𝑓(𝑧) ⋅
∂∅𝑦

∂𝑦
  (6) 

𝜸𝒙𝒚 =
𝑑𝑢

𝑑𝑦
+

𝑑𝑣

𝑑𝑥
= −𝑧

∂2𝑤

∂𝑥 ∂𝑦
+ 𝑓(𝑧) ⋅

∂∅𝑥

∂𝑦
− 𝑧

∂2𝑤

∂𝑥 ∂𝑦
+ 𝑓(𝑧) ⋅

∂∅𝑦

∂𝑥
= −2𝑧

∂2𝑤

∂𝑥 ∂𝑦
+ 𝑓(𝑧) ⋅

∂∅𝑥

∂𝑦
+

𝑓(𝑧) (7) 

𝜸𝒙𝒛 =
𝑑𝑢

𝑑𝑧
+

𝑑𝑤

𝑑𝑥
= −

∂𝑤

∂𝑥
+ 𝑓(𝑧) ⋅

∂∅𝑥

∂𝑧
+

𝑑𝑤

𝑑𝑥
= 𝑓(𝑧) ⋅

∂∅𝑥

∂𝑧
  (8) 

𝜸𝒚𝒛 =
𝑑𝑣

𝑑𝑧
+

𝑑𝑤

𝑑𝑦
= −

∂𝑤

∂𝑦
+ 𝑓(𝑧) ⋅

∂∅𝑦

∂𝑧
+

𝑑𝑤

𝑑𝑦
= 𝑓(𝑧) ⋅

∂∅𝑦

∂𝑧
  (9) 

Where 𝑢, 𝑣, 𝑤 are displacements in x, y, and z directions respectively. 

2.4. Constitutive (Stress–Strain) Relations 

Ugural (1999) expressed a relationship for stress and strain by the generalized Hooke’s law 

for a three dimensional state of stress valid for an isotropic homogenous material, upon 

simplification and necessary substitution into the constitutive equations, we obtain the stress 

– displacement relations as below; 
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𝝈𝒙 =
𝐸

1−𝜇2 [−𝑍
∂2𝑤

∂𝑥2 + 𝑓(𝑧) ⋅
∂∅𝑥

∂𝑥
+ 𝜇 (−𝑧

∂2𝑤

∂𝑦2 + 𝑓(𝑧) ⋅
∂∅𝑦

∂𝑦
)] (10) 

𝝈𝒚 =
𝐸

1−𝜇2 [𝜇 (−𝑧
∂2𝑤

∂𝑥2 + 𝑓(𝑧) ⋅
∂∅𝑥

∂𝑥
) + (−𝑧

∂2𝑤

∂𝑦2 + 𝑓(𝑧) ⋅
∂∅𝑦

∂𝑦
)] (11) 

𝝉𝒙𝒚 =
𝐸(1−𝜇)

2(1−𝜇2)
[−2𝑧

∂2𝑤

∂𝑥 ∂𝑦
+ 𝑓(𝑧) ⋅

∂∅𝑥

∂𝑦
+ 𝑓(𝑧) ⋅

∂∅𝑦

∂𝑥
] (12) 

𝝉𝒙𝒛 =
𝐸(1−𝜇)

2(1−𝜇2)
[𝑓(𝑧) ⋅

∂∅𝑥

∂𝑧
] ;  𝝉𝒚𝒛 =

𝐸(1−𝜇)

2(1−𝜇2)
[𝑓(𝑧) ⋅

∂∅𝑦

∂𝑧
] (13) 

2.5. Strain Energy (U) 

The Strain energy U, stored in a continuum of a plate was given by Ugural (1999) as the 

product of stress, strain and volume of the continuum. U is given mathematically as shown in 

Equation (14); 

𝑈 =
1

2
∫  

𝑥
∫  

𝑦
[∫  

𝑧
𝜎 ⋅ 𝜀𝑑𝑧]𝑑𝑥𝑑𝑦 (14) 

Considering strain and stress in x, y, z direction of an elastic body, the strain energy is 

expressed as; 

𝑈 =
1

2
∫  

𝑥
∫  

𝑦
[∫  

𝑡/2

−𝑡/2
(𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑥𝑧𝛾𝑥𝑧 + 𝜏𝑦𝑧𝛾𝑦𝑧)𝑑𝑧] 𝑑𝑥𝑑𝑦 (15) 

Let the sum of the components of the strain energy of the thick plate be 𝑈1. 𝑈1can therefore 

be expressed as; 

𝑈1 = 𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑥𝑧𝛾𝑥𝑧 + 𝜏𝑦𝑧𝛾𝑦𝑧 (16) 

Substituting the stress and strain components and let ∝ =  
𝑎

𝑡
 and 𝑝 =

𝑏

𝑎
, upon simplification, 

we obtain; 

𝑈 =
1

2
∫  

𝑥
∫  

𝑦
[∫  

𝑡

2

−
𝑡

2

(𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑥𝑧𝛾𝑥𝑧 + 𝜏𝑦𝑧𝛾𝑦𝑧)𝑑𝑧] 𝑑𝑥𝑑𝑦 =

𝐷

2
∫  

𝑥
∫  

𝑦
[[∆1 (

𝜕2𝑤

𝜕𝑥2 )
2

− 2∆2 ⋅
𝜕∅𝑥

𝜕𝑥
(

𝜕2𝑤

𝜕𝑥2 ) + ∆3 ⋅ (
𝜕∅𝑥

𝜕𝑥
)

2
] + [2∆1 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

− 2∆2 ⋅
𝜕∅𝑥

𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
−

2∆2 ⋅
𝜕∅𝑦

𝜕𝑥

𝜕2𝑤

𝜕𝑥𝜕𝑦
] + [∆1 (

𝜕2𝑤

𝜕𝑦2 )
2

− 2∆2
𝜕∅𝑦

𝜕𝑦

𝜕2𝑤

𝜕𝑦2 + ∆3 (
𝜕∅𝑦

𝜕𝑦
)

2

] + (1 + 𝜇) [∆3 ⋅
𝜕∅𝑦

𝜕𝑥

𝜕∅𝑥

𝜕𝑦
] +

(1−𝜇)

2
[∆3 (

𝜕∅𝑥

𝜕𝑦
)

2
+ ∆3 (

𝜕∅𝑦

𝜕𝑥
)

2

] +
(1−𝜇)

2
⋅

∝2

𝑎2 ∆4 ⋅ [∅𝑥
2 + ∅𝑦

2]𝑑𝑥𝑑𝑦 (17) 

Using 𝑓(𝑧) = 𝑧 [1 − 
13

10
(

𝑧

𝑡
)

2
], ∆i values upon calculation can be summarized below; 

∆1 = 1, ∆2= 0.805 ∆3= 0.655; ∆4= 6.48  

2.6. External Work, V on the Thick Plate 

The external work due to lateral load uniformly distributed on the plate, q is given as: 

𝑉 = −𝑞 ∬  
xy

𝑤 𝑑𝑥𝑑𝑦 (18) 

Where q = lateral load and w = deflection. 
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2.7. Potential Energy of the Plate 

The potential energy 𝛱𝑝, of the thick plate is the sum of strain energy, U and the external 

work, V. 

𝛱𝑝 = 𝑈 + 𝑉 =
𝐷

2
∫  

𝑥
∫  

𝑦
[[∆1 (

∂2𝑤

∂𝑥2 )
2

− 2∆2 ⋅
∂∅𝑥

∂𝑥
(

∂2𝑤

∂𝑥2 ) + ∆3 ⋅ (
∂∅𝑥

∂𝑥
)

2
] + [2∆1 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

− 2∆2 ⋅

𝜕∅𝑥

𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 2∆2 ⋅

𝜕∅𝑦

𝜕𝑥

𝜕2𝑤

𝜕𝑥𝜕𝑦
] + [∆1 (

𝜕2𝑤

𝜕𝑦2 )
2

− 2∆2
𝜕∅𝑦

𝜕𝑦

𝜕2𝑤

𝜕𝑦2 + ∆3 (
𝜕∅𝑦

𝜕𝑦
)

2

] + (1 + 𝜇) [∆3 ⋅

𝜕∅𝑦

𝜕𝑥

𝜕∅𝑥

𝜕𝑦
] +

(1−𝜇)

2
[∆3 (

𝜕∅𝑥

𝜕𝑦
)

2
+ ∆3 (

𝜕∅𝑦

𝜕𝑥
)

2

] +
(1−𝜇)

2
⋅

𝛼2

𝑎2 ∆4[∅𝑥
2 + ∅𝑦

2 ]] 𝑑𝑥𝑑𝑦 − 𝑞 ∫  
𝑥

∫  
𝑦

𝑤 𝑑𝑥𝑑𝑦(19) 

Where 𝐷 =
𝐸𝑡3

12(1−𝜇2)
. 

3. Methodology 

The model of ground behaviour proposed by Pasternak (1954) assumes the existence of shear 

interaction between the spring elements. This is achieved by connecting the spring elements 

to a layer of incompressible vertical elements that deform in transverse shear.The 

deformations and forces maintaining equilibrium in the shear layer are shown in Figures.2b 

and 2c. For an isotropic linear shear layer in the x–y plane with shear moduli Gx = Gy = G. 

 

Figure 2. Pasternak model (1954): (a) basic model, (b) stress state of infinitesimal element of shear 

layer, and (c) forces acting on the shear layer element 

The governing equation for the two-parameter Pasternak model is: 

𝑞(𝑥, 𝑦) = 𝑘𝑤𝑤(𝑥, 𝑦) − 𝑘𝑝∇2𝑤(𝑥, 𝑦) (20) 

Where ∇2 is the Laplace operator, 

q = Applied load;  𝑘𝑤 and 𝑘𝑝 are Winkler and Pasternak foundation parameters respectively 

and 𝑤 = deflection. 

The Pasternak model is the most reasonable, generalized two-parameter model and is easily 

conceivable for geotechnical applications as ground exhibits compressibility and deforms in 
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shear (Madhav, 1998). The expression of strain energy due to Pasternak foundation can be 

expressed as: 

𝑈𝐹 =
1

2
∫  

𝑥
∫  

𝑦
[𝐾𝑤𝑤𝑥

2 + 𝐾𝑝 {(
𝑑𝑤

𝑑𝑥
)

2
+ (

𝑑𝑤

𝑑𝑦
)

2
}] d𝑥d𝑦 (21) 

3.1. The general governing Equations for Thick Plates on Elastic Foundation 

To solve the problems of plates on elastic foundations, the usual approach is based on the 

inclusion of the foundation reactions into the corresponding differential equations of plates 

(Husain et al., 2007). Hence, the equation of thick plate – soil system: 

Π = 𝑈 + 𝑉 + 𝑈𝐹 =
𝐷

2
∫  

𝑥
∫  

𝑦
[[∆1 (

∂2𝑤

∂𝑥2 )
2

− 2∆2 ⋅
∂∅𝑥

∂𝑥
(

∂2𝑤

∂𝑥2 ) + ∆3 ⋅ (
∂∅𝑥

∂𝑥
)

2
] + [2∆1 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

−

2∆2 ⋅
𝜕∅𝑥

𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 2∆2 ⋅

𝜕∅𝑦

𝜕𝑥

𝜕2𝑤

𝜕𝑥𝜕𝑦
] + [∆1 (

𝜕2𝑤

𝜕𝑦2 )
2

− 2∆2
𝜕∅𝑦

𝜕𝑦

𝜕2𝑤

𝜕𝑦2 + ∆3 (
𝜕∅𝑦

𝜕𝑦
)

2

] + (1 + 𝜇) [∆3 ⋅

𝜕∅𝑦

𝜕𝑥

𝜕∅𝑥

𝜕𝑦
] +

(1−𝜇)

2
[∆3 (

𝜕∅𝑥

𝜕𝑦
)

2
+ ∆3 (

𝜕∅𝑦

𝜕𝑥
)

2

] +
(1−𝜇)

2
⋅

𝛼2

𝑎2 ∆4[∅𝑥
2 + ∅𝑦

2 ]] 𝑑𝑥𝑑𝑦 + ∫  
𝑥

∫  
𝑦

1

2
[𝐾𝑤𝑤2 +

𝐾𝑝 {(
𝑑𝑤

𝑑𝑥
)

2
+ (

𝑑𝑤

𝑑𝑦
)

2
}] d𝑥d𝑦 − 𝑞 ∫  

𝑥
∫  

𝑦
𝑤𝑑𝑥𝑑𝑦 (22) 

Let the domain of x and y be; 𝑥 = 𝑎𝑅 ;  𝑦 = 𝑏𝑄 respectively. Since 𝑃 =
𝑏

𝑎
, ∴ 𝑏 = 𝑃𝑎,

1

𝑃
 =

𝑎

𝑏
,

1

𝑝2  =
𝑎2

𝑏2 ,
1

𝑃4 =
𝑎4

𝑏4 ,
1

𝑝3 =
𝑎3

𝑏3.  

Let 𝑤 = 𝑤𝑥. 𝑤𝑦;  ∅𝑥 = ∅𝑥𝑦 ⋅ ∅𝑥𝑥;  ∅𝑦 = ∅𝑦𝑥 ⋅ ∅𝑦𝑦 

Executing closed domain integration on 
𝑑Π

𝑑𝑤
= expressed in non-dimensional terms, and 

letting 𝑤 = 𝐽1ℎ we obtain; 

∅𝑥 = ∅𝑥𝑦 ⋅ ∅𝑥𝑥 =  
1

a2𝑘2
2

∫  
1

0 (
∂2𝑤𝑥
∂𝑅2 )𝑑𝑅

∫  
1

0 (
∂∅𝑥𝑥

∂𝑅
)𝑑𝑄

⋅
∫  

1
0 (

∂2𝑤𝑦

∂𝑄2 )𝑑𝑄

∫  
1

0 (
∂2∅𝑥𝑦

∂𝑄2 )𝑑𝑄

𝜕𝑤

𝜕𝑅
= 𝐶𝑎 ⋅ 𝐽1

∂ℎ

∂𝑥
= 𝐽2

∂ℎ

∂𝑥
  (23) 

∅𝑦 = ∅𝑦𝑥. ∅𝑦𝑦 =
𝑛3

2

𝑃2a2𝑘2
2

∫  
1

0 (
∂2𝑤𝑦

∂𝑄2 )𝑑𝑅

∫  
1

0 (
∂∅𝑦𝑦

∂𝑄
)𝑑𝑄

⋅
∫  

1
0 (

∂2𝑤𝑥
∂𝑅2 )𝑑𝑅

∫  
1

0 (
∂2∅𝑦𝑥

∂𝑅2 )𝑑𝑅

∂𝑤

∂𝑄
= 𝐶b ⋅ 𝐽1

∂ℎ

∂𝑦
= 𝐽3

∂ℎ

∂𝑦
 (24) 

Inserting the values of w, ∅𝑥 and ∅𝑦 into equation (22) and expressing in non-dimensional 

terms, we obtain equation (25). 

Π =
𝐷𝑎𝑏

2𝑎4 ∫  
1

0
∫  

1

0
[(𝐽1

2∆1 − 2𝐽1𝐽2∆2 + 𝐽2
2∆3) (

𝑑2ℎ

𝑑𝑅2)
2

+ (𝐽1
2∆1 − 2𝐽1𝐽3∆2 + 𝐽3

2∆3)
1

𝑃4 (
𝑑2ℎ

𝑑𝑄2)
2

+

(2𝐽1
2∆1 − 2𝐽1𝐽2∆2 − 2𝐽1𝐽3∆2) ⋅

1

𝑃2 (
𝑑2ℎ

𝑑𝑅2 ⋅
𝑑2ℎ

𝑑𝑄2) + (1 + 𝜇)𝐽2𝐽3∆3 ⋅
1

𝑃2 (
𝑑2ℎ

𝑑𝑅2 ⋅
𝑑2ℎ

𝑑𝑄2) +

[(
1−𝜇

2
) (𝐽2

2∆3 + 𝐽3
2∆3)] ⋅

1

𝑃2 (
𝑑2ℎ

𝑑𝑅2 ⋅
𝑑2ℎ

𝑑𝑄2) +∝2 (
1−𝜇

2
) ⋅ (𝐽2

2∆4) (
𝑑ℎ

𝑑𝑅
)

2
+

∝2

𝑃2 (
1−𝜇

2
) (𝐽3

2∆4) (
𝑑ℎ

𝑑𝑄
)

2
] 𝑑𝑅𝑑𝑄 +

1

2
∫  

1

0
∫  

1

0
(𝑘𝑤𝑎𝑏𝑗1

2ℎ2 + 𝑘𝑝𝑎𝑏𝑗1
2 {(

𝑑ℎ

𝑑𝑅
)

2
+ (

𝑑ℎ

𝑑𝑄
)

2
}) 𝑑𝑅𝑑𝑄 −

𝑞𝑎𝑏𝐽1 ∫  
1

0
∫  

1

0
[h] ∂𝑅 ∂𝑄 (25) 
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Adopting Ritz method of total energy minimization, the general governing equation for thick 

plates on elastic foundations is obtained by differentiating the total potential energy with 

respect to the coefficients of deflection 𝑤, shear rotation in x-axis ∅𝑥 and shear rotation in y-

axis ∅𝑦 to yield three simultaneous equations. i.e. 
𝑑Π

𝑑𝑗1
= 0; 

𝑑Π

𝑑j2
= 0 and 

𝑑Π

𝑑j3
= 0. 

𝐷

𝑎4 ∫  
1

0
∫  

1

0
[(𝐽1∆1−𝐽2∆2) (

𝑑2ℎ

𝑑𝑅2)
2

+ (𝐽1∆1 − 𝐽3∆2)
1

𝑃4 (
𝑑2ℎ

𝑑𝑄2)
2

+(2𝐽1∆1 − 𝐽2∆2 − 𝐽3∆2) ⋅

1

𝑃2 (
𝑑2ℎ

𝑑𝑅2 ⋅
𝑑2ℎ

𝑑𝑄2)] 𝑑𝑅𝑑𝑄 + 𝑘𝑤𝑗1 ∫  
1

0
∫  

1

0
ℎ2𝑑𝑅𝑑𝑄 + 𝑘𝑝𝑗1 ∫  

1

0
∫  

1

0
{(

𝑑ℎ

𝑑𝑅
)

2
+ (

𝑑ℎ

𝑑𝑄
)

2
} 𝑑𝑅𝑑𝑄 =

𝑞 ∫  
1

0
∫  

1

0
[ℎ] ∂𝑅 ∂𝑄 (26) 

𝐷

𝑎4 ∫  
1

0
∫  

1

0
[(−𝐽1∆2 + 𝐽2∆3) (

𝑑2ℎ

𝑑𝑅2)
2

+ (−𝐽1∆2) ⋅
1

𝑃2 (
𝑑2ℎ

𝑑𝑅2 ⋅
𝑑2ℎ

𝑑𝑄2) +
(1+𝜇)

2
⋅ 𝐽3∆3

1

𝑃2 (
𝑑2ℎ

𝑑𝑅2 ⋅

𝑑2ℎ

𝑑𝑄2) + (
1−𝜇

2
) (𝐽2∆3) ⋅

1

𝑃2 (
𝑑2ℎ

𝑑𝑅2 ⋅
𝑑2ℎ

𝑑𝑄2) +∝2 (
1−𝜇

2
) ⋅ (𝐽2∆4) (

𝑑ℎ

𝑑𝑅
)

2
] 𝑑𝑅𝑑𝑄 = 0 (27) 

𝐷

𝑎4 ∫  
1

0
∫  

1

0
[(−𝐽1∆2 + 𝐽3∆3)

1

𝑃4 (
𝑑2ℎ

𝑑𝑄2)
2

+ (−𝐽1∆2) ⋅
1

𝑃2 (
𝑑2ℎ

𝑑𝑅2 ⋅
𝑑2ℎ

𝑑𝑄2) +
(1+𝜇)

2
𝐽2∆3 ⋅

1

𝑃2 (
𝑑2ℎ

𝑑𝑅2 ⋅

𝑑2ℎ

𝑑𝑄2) + [(
1−𝜇

2
) (𝐽3∆3)] ⋅

1

𝑃2 (
𝑑2ℎ

𝑑𝑅2 ⋅
𝑑2ℎ

𝑑𝑄2) +
∝2

𝑃2 (
1−𝜇

2
) (𝐽3∆4) (

𝑑ℎ

𝑑𝑄
)

2
] 𝑑𝑅𝑑𝑄 = 0 (28) 

Let Å1 = ∫  
1

0
∫  

1

0
(

∂2ℎ

∂𝑅2)
2

∂𝑅 ∂𝑄 ; Å2 = ∫  
1

0
∫  

1

0
(

∂2ℎ

∂𝑅2 ⋅
∂2ℎ

∂𝑄2) ∂𝑅 ∂𝑄 ; Å3 = ∫  
1

0
∫  

1

0
(

∂2ℎ

∂𝑄2)
2

∂𝑅 ∂𝑄  

Å4 = ∫  
1

0

∫ (
∂h

∂R
)

2
1

∂𝑅 ∂𝑄 ; Å5 = ∫  
1

0

∫  
1

0

(
∂h

∂Q
)

2

∂𝑅 ∂𝑄 ; Å6 = ∫  
1

0

∫  
1

0

ℎ2𝜕𝑅𝜕𝑄; Å7 = ∫  
1

0

∫  
1

0

ℎ ∂𝑅 ∂𝑄  

Equations (26), (27) and (28) can be expressed in matrix form as; 

[

𝜔11    𝜔12    𝜔13

𝜔21    𝜔22    𝜔23

𝜔31    𝜔32    𝜔33

] ⋅ [
𝐽1

𝐽2

𝐽3

] =
𝑎4

𝐷
[
qÅ7

0
0

] (29) 

Where: 

𝜔11 = ∆1 (Å1 +
2Å2

𝑃2 +
Å3

𝑃4)  +  𝑘𝑤Å7 + 𝑘𝑝(Å4 + Å5);    𝜔12 = 𝜔21 = −∆2 (Å1 +
Å2

𝑃2)       (30) 

𝜔13 = 𝐴31 = −∆2 (
Å2

𝑃2 +
Å3

𝑃4)   ;    𝜔23 = 𝜔32 = (
1+𝜇

2𝑃2 ) Å2∆3 (31) 

𝜔22 = Å1∆3 + (
1−𝜇

2𝑃2 ) Å2∆3 + (
1−𝜇

2
) ∝2 Å4∆4 (32) 

𝜔33 = (
1−𝜇

2𝑃2 ) Å2∆3 +
Å3

𝑃4 ∆3 + (
1−𝜇

2𝑃2 ) ∝2 Å5∆4 ;   Å7 = ∫  
1

0
∫  

1

0
ℎ ∂𝑅 ∂𝑄 (33) 
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4. Results and Discussion 

4.1. Simply Supported (SSSS) Edge Condition 

The boundary conditions for SSSS edge are as follows; 

 

Figure 3. Simply supported edge condition 

I. At R = 0 and at R = 1, the deflection 𝑤𝑥 = 0    

II. At R = 0 and at R = 1, Bending moment = 0, 𝑖.𝑒. 
∂2𝑤𝑥

∂R2  = 0 

Substituting conditions: 

𝑎0 = 0; 𝑎2 = 0; 𝑎3 = −2𝑎4 and 𝑎1 =  𝑎4 

𝑤𝑥 = 𝑎4(𝑅 − 2𝑅3 + 𝑅4) (34) 

Similarly, we can obtain: 

𝑤𝑦 = 𝑏4(𝑄 − 2𝑄3 + 𝑄4) (35) 

4.1.1. SSSS Rectangular Plate Particular Shape Function 

The deflection equation is obtained by multiplying equations (34) and (35). 

𝑤 = 𝑎4(𝑅 − 2𝑅3 + 𝑅4) ⋅ 𝑏4(𝑄 − 2𝑄3 + 𝑄4) (36) 

However since; w = 𝐴ℎ = 𝐴(𝑅 − 2𝑅3 + 𝑅4) ⋅ (𝑄 − 2𝑄3 + 𝑄4) 

Where; 𝐴 = 𝑎4𝑏4  And  ℎ = (𝑅 − 2𝑅3 + 𝑅4) ⋅ (𝑄 − 2𝑄3 + 𝑄4) 

ℎ is the shape function for SSSS thick plate, ‘A’ is the coefficient of deflection. Upon 

substitution and simplification we obtain; 

Å1 = 0.23619; Å2 = 0.23592; Å3 = 0.23619;  Å4 = 0.0239; Å5 = 0.0239; Å6 = 0.002421; Å7 = 

0.04 

And as already established ∆1 = 1, ∆2= 0.805; ∆3 = 0.655; ∆4 = 6.48 and ∝ =  
𝑎

𝑡
  and 𝑝 =

𝑏

𝑎
. 
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4.1.2. Numerical Example 

The deflection at the center of SSSS isotropic thick plate, the in-plane stresses and the 

vertical shear stresses at the edges of the plate for different span to depth ratio corresponding 

to different values of  
𝑏

𝑎
, 𝑘𝑤 and 𝑘𝑝 subjected to a uniformly distributed load q and μ = 0.3 is 

shown in Table 1. 

Results are presented in the form: 

𝒘̅ =
E𝑡3

q𝑎4 𝑤 (𝒖̅ 𝒗̅) =
E𝑡2

q𝑎3
(𝑢, 𝑣); (𝝈̅𝒙, 𝝈̅𝒚) =

𝑡2

q𝑎2 (𝜎𝑥, 𝜎𝑦) 

𝝉̅𝒙𝒚 =
𝑡2

q𝑎2 𝜏𝑥𝑦 (𝝉̅𝒛𝒙, 𝝉̅𝒚𝒛) =
𝑡

q𝑎
(𝜏𝑧𝑥 , 𝜏𝑦𝑧) 

Table 1. 

Results for non-dimensional stresses for SSSS plate on Pasternak foundation (p = 1; p = 2) 

𝒘̅ 𝒂𝒕 (𝒙 =
𝒂

𝟐
, 𝒚 =

𝒃

𝟐
) ; 𝒖 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒂𝒕 (𝒙 =  𝟎, 𝒚 =

𝒃

𝟐
) ; 𝒗̅ 𝒂𝒕 𝒂𝒕 (𝒙 =

𝒂

𝟐
 , 𝒚 = 𝟎 ) ; (𝝈̅𝒙, 𝝈̅𝒚) 𝒂𝒕 (𝒙 =

𝒂

𝟐
, 𝒚 =

𝒃

𝟐
) ; 𝝉̅𝒙𝒚 𝒂𝒕 (𝒙 

=  𝟎, 𝒚 = 𝟎 )   ; 𝝉̅𝒛𝒙 𝒂𝒕 (𝒙 =  𝟎, 𝒚 =
𝒃

𝟐
) ;  𝝉̅𝒚𝒛 𝒂𝒕 (𝒙 =

𝒂

𝟐
 , 𝒚 = 𝟎 )  𝒂𝒏𝒅 (𝒑 =

𝒃

𝒂

= 𝟏)  𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 𝒖𝒏𝒊𝒇𝒐𝒓𝒎𝒍𝒚 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒅 𝒍𝒐𝒂𝒅, 𝒒 

   𝒌𝒑    𝒌𝒘 α 𝒘̅ 𝒖̅ 𝒗̅ 𝝈̅𝒙 𝝈̅𝒚 𝝉̅𝒙𝒚 𝝉̅𝒛𝒙 𝝉̅𝒚𝒛 

0 

0 

5 0.055350 -0.07491 -0.07491 0.321046 0.321046 -0.1844 0.388893 0.388893 

10 0.047724 -0.07294 -0.07294 0.312601 0.312601 -0.17955 0.389601 0.389601 

50 0.045278 -0.07231 -0.07231 0.309892 0.309892 -0.17799 0.389829 0.389829 

100 0.045202 -0.07229 -0.07229 0.309808 0.309808 -0.17794 0.389836 0.389836 

1000 0.045176 -0.07228 -0.07228 0.309780 0.309780 -0.17792 0.389838 0.389838 

10000 

5 0.001708 -0.00231 -0.00231 0.009904 0.009904 -0.00569 0.011997 0.011997 

10 0.001699 -0.00260 -0.00260 0.011130 0.011130 -0.00639 0.013871 0.013871 

50 0.001696 -0.00271 -0.00271 0.011607 0.011607 -0.00667 0.014601 0.014601 

100 0.001696 -0.00271 -0.00271 0.011623 0.011623 -0.00668 0.014625 0.014625 

1000 0.001696 -0.00271 -0.00271 0.011628 0.011628 -0.00668 0.014633 0.014633 

100000 

5 0.000176 -0.00024 -0.00024 0.001019 0.001019 -0.00059 0.001234 0.001234 

10 0.000176 -0.00027 -0.00027 0.001150 0.001150 -0.00066 0.001433 0.001433 

50 0.000176 -0.00028 -0.00028 0.001201 0.001201 -0.00069 0.001511 0.001511 

100 0.000176 -0.00028 -0.00028 0.001203 0.001203 -0.00069 0.001514 0.001514 

1000 0.000176 -0.00028 -0.00028 0.001203 0.001203 -0.00069 0.001515 0.001515 

10 

10000 

5 0.001676 -0.00227 -0.00227 0.009718 0.009718 -0.00558 0.011772 0.011772 

10 0.001667 -0.00255 -0.00255 0.010922 0.010922 -0.00627 0.013612 0.013612 

50 0.001664 -0.00266 -0.00266 0.011391 0.011391 -0.00654 0.014329 0.014329 

100 0.001664 -0.00266 -0.00266 0.011406 0.011406 -0.00655 0.014353 0.014353 

1000 0.001664 -0.00266 -0.00266 0.011411 0.011411 -0.00655 0.014360 0.014360 

100000 

5 0.000175 -0.00024 -0.00024 0.001017 0.001017 -0.00058 0.001232 0.001232 

10 0.000175 -0.00027 -0.00027 0.001148 0.001148 -0.00066 0.001430 0.001430 

50 0.000175 -0.00028 -0.00028 0.001199 0.001199 -0.00069 0.001508 0.001508 

100 0.000175 -0.00028 -0.00028 0.001201 0.001201 -0.00069 0.001511 0.001511 

1000 0.000175 -0.00028 -0.00028 0.001201 0.001201 -0.00069 0.001512 0.001512 

20 10000 

5 0.001645 -0.00223 -0.00223 0.009539 0.009539 -0.00548 0.011555 0.011555 

10 0.001637 -0.00250 -0.00250 0.010722 0.010722 -0.00616 0.013363 0.013363 

50 0.001634 -0.00261 -0.00261 0.011182 0.011182 -0.00642 0.014067 0.014067 

100 0.001634 -0.00261 -0.00261 0.011197 0.011197 -0.00643 0.014090 0.014090 

1000 0.001634 -0.00261 -0.00261 0.011202 0.011202 -0.00643 0.014098 0.014098 
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100000 

5 0.000175 -0.00024 -0.00024 0.001015 0.001015 -0.00058 0.001229 0.001229 

10 0.000175 -0.00027 -0.00027 0.001145 0.001145 -0.00066 0.001427 0.001427 

50 0.000175 -0.00028 -0.00028 0.001197 0.001197 -0.00069 0.001505 0.001505 

100 0.000175 -0.00028 -0.00028 0.001198 0.001198 -0.00069 0.001508 0.001508 

1000 0.000175 -0.00028 -0.00028 0.001199 0.001199 -0.00069 0.001509 0.001509 

𝒘̅ 𝒂𝒕 (𝒙 =
𝒂

𝟐
, 𝒚 =

𝒃

𝟐
)  ; 𝒖 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝒂𝒕 (𝒙 =  𝟎, 𝒚 =

𝒃

𝟐
)  ; 𝒗̅ 𝒂𝒕 𝒂𝒕 (𝒙 =

𝒂

𝟐
 , 𝒚 = 𝟎 )  ; (𝝈̅𝒙, 𝝈̅𝒚) 𝒂𝒕 (𝒙 =

𝒂

𝟐
, 𝒚 

=
𝒃

𝟐
)   ;  𝝉̅𝒙𝒚 𝒂𝒕 (𝒙 =  𝟎, 𝒚 = 𝟎 )   ; 𝝉̅𝒛𝒙 𝒂𝒕 (𝒙 =  𝟎, 𝒚 =

𝒃

𝟐
) ;  𝝉̅𝒚𝒛 𝒂𝒕 (𝒙 =

𝒂

𝟐
 , 𝒚 

= 𝟎 )  𝒂𝒏𝒅 (𝒑 =
𝒃

𝒂
= 𝟐) . 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 𝒖𝒏𝒊𝒇𝒐𝒓𝒎𝒍𝒚 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒅 𝒍𝒐𝒂𝒅, 𝒒 

   𝒌𝒑    𝒌𝒘 α 𝒘̅ 𝒖̅ 𝒗̅ 𝝈̅𝒙 𝝈̅𝒚 𝝉̅𝒙𝒚 𝝉̅𝒛𝒙 𝝉̅𝒚𝒛 

0 

0 

5 0.131911 -0.18921 -0.0473 0.670556 0.343075 -0.23288 0.622423 0.311212 

10 0.119703 -0.18606 -0.04651 0.659377 0.337355 -0.22899 0.623154 0.311577 

50 0.11579 -0.18505 -0.04626 0.655794 0.335522 -0.22775 0.623389 0.311694 

100 0.115668 -0.18501 -0.04625 0.655682 0.335465 -0.22771 0.623396 0.311698 

1000 0.115627 -0.185 -0.04625 0.655645 0.335446 -0.2277 0.623398 0.311699 

10000 

5 0.001739 -0.00249 -0.00062 0.008838 0.004522 -0.00307 0.008204 0.004102 

10 0.001736 -0.0027 -0.00067 0.009565 0.004894 -0.00332 0.009039 0.004520 

50 0.001736 -0.00277 -0.00069 0.009829 0.005029 -0.00341 0.009344 0.004672 

100 0.001735 -0.00278 -0.00069 0.009838 0.005033 -0.00342 0.009353 0.004677 

1000 0.001735 -0.00278 -0.00069 0.009841 0.005035 -0.00342 0.009357 0.004678 

100000 

5 0.000176 -0.00025 -6.3E-05 0.000894 0.000458 -0.00031 0.000830 0.000415 

10 0.000176 -0.00027 -6.8E-05 0.000969 0.000496 -0.00034 0.000916 0.000458 

50 0.000176 -0.00028 -7E-05 0.000996 0.000510 -0.00035 0.000947 0.000474 

100 0.000176 -0.00028 -7E-05 0.000997 0.000510 -0.00035 0.000948 0.000474 

1000 0.000176 -0.00028 -7E-05 0.000998 0.000510 -0.00035 0.000948 0.000474 

10 

10000 

5 0.001705 -0.00245 -0.00061 0.00867 0.004436 -0.00301 0.008047 0.004024 

10 0.001703 -0.00265 -0.00066 0.009382 0.004800 -0.00326 0.008867 0.004433 

50 0.001702 -0.00272 -0.00068 0.009642 0.004933 -0.00335 0.009165 0.004583 

100 0.001702 -0.00272 -0.00068 0.00965 0.004937 -0.00335 0.009175 0.004588 

1000 0.001702 -0.00272 -0.00068 0.009653 0.004939 -0.00335 0.009178 0.004589 

100000 

5 0.000176 -0.00025 -6.3E-05 0.000893 0.000457 -0.00031 0.000829 0.000414 

10 0.000176 -0.00027 -6.8E-05 0.000967 0.000495 -0.00034 0.000914 0.000457 

50 0.000176 -0.00028 -7E-05 0.000994 0.000509 -0.00035 0.000945 0.000473 

100 0.000176 -0.00028 -7E-05 0.000995 0.000509 -0.00035 0.000946 0.000473 

1000 0.000176 -0.00028 -7E-05 0.000996 0.000509 -0.00035 0.000947 0.000473 

20 

10000 

5 0.001673 -0.0024 -0.0006 0.008507 0.004352 -0.00295 0.007896 0.003948 

10 0.001671 -0.0026 -0.00065 0.009206 0.004710 -0.0032 0.008701 0.00435 

50 0.001671 -0.00267 -0.00067 0.009461 0.004841 -0.00329 0.008994 0.004497 

100 0.001671 -0.00267 -0.00067 0.00947 0.004845 -0.00329 0.009003 0.004502 

1000 0.001671 -0.00267 -0.00067 0.009472 0.004846 -0.00329 0.009006 0.004503 

100000 

5 0.000175 -0.00025 -6.3E-05 0.000891 0.000456 -0.00031 0.000827 0.000413 

10 0.000175 -0.00027 -6.8E-05 0.000965 0.000494 -0.00034 0.000912 0.000456 

50 0.000175 -0.00028 -7E-05 0.000992 0.000508 -0.00034 0.000943 0.000472 

100 0.000175 -0.00028 -7E-05 0.000993 0.000508 -0.00034 0.000944 0.000472 

1000 0.000175 -0.00028 -7E-05 0.000994 0.000508 -0.00035 0.000945 0.000472 

 

From Table 1, the effect of the foundation modulus of subgrade reaction, span-depth ratio and 

aspect ratio of the plate can be observed. The value of in-plane quantities and that of out-of-
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plane quantities generally reduced as the foundation modulus increased.  Similarly, it is 

observed that as the span-depth ratio increases, values of in-plane quantities and that of out-

of-plane quantities decreases for each aspect ratio, p. It can also be observed generally that as 

the aspect ratio increases, the values of in-plane quantities and that of out-of-plane quantities 

increases. However, worthy of note is that in-plane quantities being functions of x, y and z, 

vary linearly with the plate thickness but the out-plane displacements, function of only x and 

y, do not vary linearly with the plate thickness. 

Table 2. 

Results for non-dimensional stresses for SSSS plate 

Study 𝒌𝒑 𝒌𝒘 α 

𝒘̅

=
𝟏𝟎𝟎𝐄𝒕𝟑

𝐪𝒂𝟒
𝒘 

𝒖̅

=
𝐄𝒕𝟐

𝐪𝒂𝟑
𝒖 

𝝈̅𝒙

=
𝒕𝟐

𝐪𝒂𝟐
𝝈𝒙 

𝝈̅𝒚

=
𝒕𝟐

𝐪𝒂𝟐
𝝈𝒚 

𝝉̅𝒙𝒚

=
𝒕𝟐

𝐪𝒂𝟐
𝝉𝒙𝒚 

𝝉̅𝒛𝒙

=
𝒕

𝐪𝒂
𝝉𝒛𝒙 

Plate 

theory 

Present study 

0 0 10 

4.772441 -0.07294 0.312601 0.312601 -0.17955 0.389601 TRDT 

Ibearugbulem 

et al 
4.7723 -0.073 0.3127 0.3127 -0.1796 0.392 TRDT 

% difference -0.00295 0.082192 0.03166 0.03166 0.02784 0.61199  

Karama 4.797 -0.0723 0.3243 0.3243 -0.1746 0.3909 TSDT 

% difference 0.511966 -0.8852 3.607462 3.607462 -2.83505 0.33231  

Mindlin 4.6701 -0.0741 0.287 - -0.1951 0.3331 FSDT 

% difference -2.19141 1.565452 -8.92021 - 7.970272 -16.9622  

Reddy 4.666 -0.075 0.289 - -0.2031 0.492 HSDT 

% difference -2.2812 2.746667 -8.16644 - 11.59527 20.8128  

Kirchoff 4.436 -0.0723 0.287 0.287 -0.195 0 CPT 

% difference -7.58433 -0.8852 -8.92021 -8.92021 7.923077 100  

present 

0 0 100 

4.520167 -0.07229 0.309808 0.309808 -0.17794 0.389836 TRDT 

Ibearugbulem 

et al 
4.5203 -0.0723 0.3099 0.3099 -0.178 0.3802 TRDT 

% difference 0.002942 0.013831 0.029687 0.029687 0.033708 -2.53446  

Karama 4.5201 -0.0723 0.3098 0.3098 -0.1779 0.392 TSDT 

% difference -0.00148 0.013831 -0.00258 -0.00258 -0.02248 0.552041  

Mindlin 4.546 -0.0714 0.3203 0.3203 -0.1725 0.3909 FSDT 

% difference 0.568258 -1.2465 3.275679 3.275679 -3.15362 0.272192  

Reddy 4.546 -0.0714 0.3203 0.3203 -0.1725 0.3892 HSDT 

% difference 0.568258 -1.2465 3.275679 3.275679 -3.15362 -0.16341  

Kirchhoff 4.5201 -0.0723 0.3099 0.3099 -0.179 0 CPT 

% difference -0.00148 0.013831 0.029687 0.029687 0.592179 100  

 

Table 2 shows a comparison of the results obtained without the influence of foundation 

parameters 𝑘𝑤 𝑎𝑛𝑑 𝑘𝑝, it is observed that results obtained in this study converges with that 

obtained in third order deformation theories while significant difference was observed in 

higher order shear deformation theory, classical plate theory and first order deformation 

theory. This may be due to the fact that the classical plate theory and the first order shear 

deformation theory do not exactly inculcate the shear deformation shape function. Worthy of 

note is the fact that there was approximately no difference between the out-of-plane 

displacements and in-plane obtained in this study and that obtained using the classical plate 

theory at span-depth ratios of 100 and above. This further validates the consideration of 

plates as thin for span-depth ratio of 100 and above. 
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When compared with finite element analysis, the difference between the deflection results 

obtained from this study and finite element analysis without the consideration for foundation 

parameters is shown in Table 3. 

Table 3. 

Comparison of values obtained in this study with FEM 

α 
Thickness of plate 

(mm) 

Deflection from 

present study 

(mm) 

Deflection from 

FEM (mm) 

Percentage 

difference 

5 1000 0.013837 0.0144 -4.068% 

10 500 0.095448 0.097 -1.626% 

50 100 11.3195 11.225 0.8348% 

100 50 90.404 89.523 0.9745% 

1000 5 90352 89429.482 1.021% 

a = b = 5m; E = 2.5 × 107 kN/m2; μ = 0.3 

 

Figure 4. A graph of deflection obtained in this study and that obtained with FEM 

5. Conclusion 

Analysis of thick plates resting on Winkler-Pasternak two parameter foundation using 

characteristic orthogonal polynomials was carried out in this study. The shape function 

derived from the Soldatos (1992) trigonometric shape function was found to be sufficient and 

satisfactory for obtaining the solution to plates on elastic foundation and the resulting 

governing equations can be satisfied throughout the domain of the plate. The method 

proposed in this study provides a simplified method as only definite integration is needed to 

obtain solutions. 

Energy approach (Ritz method) was also found to be satisfactory in determining the potential 

energy of the thick plate resting on Winkler-Pasternak elastic foundation under different 

boundary conditions. Foundation parameters greatly affected the in-plane and out-of-plane 

displacements of the plates. As the foundation modulus of the soil increased, the in-plane and 

out-of-plane displacements of the plates decreased.  

At span-depth ratios of 100 and above, the in-plane and out-of-plane displacements of the 

plates obtained in this study were approximately the same with those obtained in the Classical 
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plate theory (CPT). This further validates the fact that plates with span-depth ratios of 100 

and above, a plate is considered to be thin. 
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