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ARTICLE INFO ABSTRACT

Keywords: A solution for thick plates on Winkler-Pasternak foundation using
Plates on elastic characteristic orthogonal polynomials (COPs) displacement functions
foundation, was presented in this study. A shear deformation function was
Pasternak model, developed from Soldatos’ (1992) trigonometric function and the Ritz
Winkler model, energy approach was used to determine the total potential energy of the
Thick plates, thick plate on elastic foundation. This method presents a simple and
Ritz method, efficient method where only definite integration is required to obtain
Characteristic solutions. Results for non-dimensional in-plane and out-of-plane
Orthogonal displacements for simply supported (SSSS) thick plates were presented

Polynomials (COP’S)

and was observed to converge with that of other third-order shear

deformation theories (TSDT) available in literature. From the study, it
was observed that the in-plane and out-of-plane displacements reduced
generally as the foundation modulus of the soil increased and decreases
as the span-depth ratio increased for each aspect ratio. Both the
Winkler and Pasternak foundation parameters influenced the results
obtained as the foundation modulus is dependent on these parameters.

1. Introduction

Many practical engineering systems such as pavement of highways, foundation slabs of
buildings, etc can be related to the solution of plates resting on an elastic foundation. The
relationship between all engineering infrastructure and their foundation soils is of great
importance for designers, engineers and contractors (Nwaiwu et al., 2020). In the
construction such engineering structures, the idea is to transfer superstructure load safely to
the foundation (soil), hence an obvious interaction between the soil and the structure itself.
Such a system leads to the consideration of soil-structure interaction. Soil-structure
interaction concerns the response of the soil and the structure on it, especially when subjected
to dynamic loads (Gaikwad and Shingade, 2020; NIST, 2012). Therefore, the stresses
induced in the soil-structure system are largely dependent on the properties and behaviour of
the soil and the structure under the applied load.

A plate is said to be a flat structural component bound by two planes that are parallel to each
other called faces and a cylindrical surface called an edge. Plates have wide applications in
engineering structures including bridges, architectural structures, etc. They can be classified
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as thick or thin depending on their thickness relative to their lateral dimensions. Thin plates
can be analysed using the Kirchoff Classical Plate Theory (CPT) where the effect of
transverse shear deformation is neglected. However as the plate becomes thicker, the effect of
shear deformation becomes more important. In order to overcome the deficiency of the CPT,
shear deformation theories have been proposed including higher-order shear deformation
theory (HSDT), refined theory, trigonometric shear deformation theory (TSDT) amongst
others (Ibearugblem and Ezeh, 2013; Ezeh et al., 2014).

On the other hand soils can be analysed using any of these two approaches namely; the
continuum approach (elastic, elastoplastic, anisotropic etc.) and the modeling approach
(where the soil is modeled and model parameters are determined). Winkler (1867) proposed a
one parameter elastic model where he considered the behavior of soils to be linear, and can
be represented using independent discrete linear elastic springs. An identified problem with
the Winkler model is the independent (uncoupled) behavior of the soil springs which does not
represent the displacement behavior of typical soils under load (Ubani et al., 2020).

(a)
P
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Figure 1. Schematic representation of soil spring system (a) Coupled behavior (b) Uncoupled
behavior (Ubani et al., 2020)

Contrary to the Winkler model, Pasternak (1954) proposed a two parameter elastic model
where he noted the existence of shear interaction among the spring elements, and that the
load-deflection relationship is obtained by considering the vertical equilibrium of a shear
layer. Both the Winkler model (Naderi and Saidi, 2011; Ozdemir, 2012; Aziz et al., 2013; Al-
Azzawi, 2016) and the Pasternak model (Malekzadeh, 2009; Hosseini et al., 2010; Thai and
Choi, 2013; Akavci, 2014) have been used by past researchers to analyse thick plates on
elastic foundation. However the use of characteristic orthogonal polynomials (COP) has not
been used to analyse thick plates on elastic foundations. This research aims to fill that gap.

2. Theoretical Framework

The shear deformation shape function was derived from the Soldatos (1992) trigonometric
shape function. The soldatos (1992) trigonometric shear function can be expressed as:

1

f(2) = [zcosh (E) — tsinh (%)] (1)
In non-dimensional form; z = st

Where “s” is a non-dimensional parameter and “7” is the thickness of the plate. The
trigonometric shear function was plotted graphically across a plate of unit thickness (—0.5 <'s
< 0.5) with an interval of 0.025. The shear deformation shape function used in this study is

. . . z 13 (73 .
the equation of the curve expressed in polynomial form; f(z) =t [(?) T (?) ] which can

2
be simplified as; f(z) = z [1 -5 ]

10 \t
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2.1. Assumptions

It is assumed the out-of-plane displacement w, is only differentiable in x and y axes.
Consequently the vertical strain, €, = 0, and the effect of the out-of-plane normal stress on the
response of the plate is small with respect to the other stresses. Thus, it can be neglected (i.e

= (0. However, in contrast to the CPT, it is also assumed that the vertical line that is
initially normal to the middle surface of the plate before bending becomes parabolic after
bending.

2.2. Kinematic Relations
In-plane displacements, # and v are defined mathematically as;
U= U+ ug v= v+ v (2)

usand vs are the shear deformation components of the in-plane displacements and are defined
mathematically as,

us = f(2) - 0 ; vs = f(2)- 0, 3)
Where; @, = shear rotation in x-direction and @,, = shear rotation in y-direction

According to the classical plate theory (CPT) the in—plane displacements, u,. and v, can be
expressed as;

d d
U = =20, = —Zd—‘:; v = —20,, = —Z% (4)
Therefore,

i i)
u=—z—"+f(2) 0y v=—z%+f(z)-®y (5)

2.3. Strain — Displacement Relations

Strain—displacement relations suitable for an isotropic and homogenous material in three
dimensions were developed by Ventsel and Krauthammer (2001) and applying the
assumption that the vertical strain, €, = 0 to the strain — displacement we have;

gx:%:_2%+f(z)'%?£y=Z—;——Z—+f() (6)
Vay = Z;-l-dx: axay +f(@- awx axay f() +f() (w"

F@) -
}’xz=%+2—:/=—Z—:+f(2)-%+i—:=f(z)-% @®
At RO - R OR ©)

Where u, v, w are displacements in x, y, and z directions respectively.

2.4. Constitutive (Stress—Strain) Relations

Ugural (1999) expressed a relationship for stress and strain by the generalized Hooke’s law
for a three dimensional state of stress valid for an isotropic homogenous material, upon
simplification and necessary substitution into the constitutive equations, we obtain the stress
— displacement relations as below;
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0 =1 axz+f<) Pt u(-255+ @3 (10)
oy = s |u(-255+ 1@ ‘m’“) + (255 + 1@ 32)] (11)
Ty = ot <22 0+ f(2) - 4 f(2) - 2] (12)
T = [ 52| 5 T z—iﬁl_‘u’?) [F-22] (13)

2.5. Strain Energy (U)

The Strain energy U, stored in a continuum of a plate was given by Ugural (1999) as the
product of stress, strain and volume of the continuum. U is given mathematically as shown in
Equation (14);

U= éfx fy [f o edz]dxdy (14)

Considering strain and stress in x, y, z direction of an elastic body, the strain energy is
expressed as;

2
= %fx f [ ti/z (oxex + 0y + TayVuy + TuzVuz + ryzyyz)dz] dxdy (15)

Let the sum of the components of the strain energy of the thick plate be U; U;can therefore
be expressed as;

Ul = Ox&y + Uygy + Txy)/xy + TxzVxz + Tyzyyz (16)

o . b T .
Substituting the stress and strain components and let o< = % and p = -, upon simplification,
we obtain;

t
L t

U= Efx fy If_ZE (0,8, + 0y€y + TayVay + TuzVaz + Tyzyyz)dzl dxdy =
2

D azw 2 20 aa)x 2 20, 9%w
_f f “Al _2 _ZAZ. ox (axz) AB (ax ] [ZAl 6x6y) _ZAZ y 6x6y

90y 2%w ﬂ A, 29y 2w 20y 90y 30,
Bz 6x6x6y] [ dy ) 2a dy? + 43 (a )]+(1+”)[A3 x6y]+
(1-w) 6(Z)x a9 (1 [L) o2
T[A3 E) 8 (22) ] = Ay [02 + 02]dxdy (17)
Using f(z) = z [1 - = % ] Ai values upon calculation can be summarized below;

A, =1, A,= 0.805 A;= 0.655; A,= 6.48

2.6. External Work, V on the Thick Plate
The external work due to lateral load uniformly distributed on the plate, g is given as:

V=—q ffxyw dxdy (18)

Where g = lateral load and w = deflection.
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2.7. Potential Energy of the Plate

The potential energy II,,, of the thick plate is the sum of strain energy, U and the external
work, V.

2

wa=ﬂwq4ﬂw%%w%@][m z) -

%6W_ _%aw _ aq)yaz 20,
dy 0xdy 242 dx axay] [ 28, - dy 09y2 Az (6 ) ] + 1+ [A3

%%#ﬂu%+unh%wmwwwwqﬂwmw>

Et3
Where D = m

3. Methodology

The model of ground behaviour proposed by Pasternak (1954) assumes the existence of shear
interaction between the spring elements. This is achieved by connecting the spring elements
to a layer of incompressible vertical elements that deform in transverse shear.The
deformations and forces maintaining equilibrium in the shear layer are shown in Figures.2b
and 2c. For an isotropic linear shear layer in the x—y plane with shear moduli Gx= G, = G.

X X+dx

TTTT Shear Layer m - - X
_ awg
a(x.y ’( -—X xS
|||||||||||||||||||| A iz

[T
I £ T T T T T = e+ 03 iy

(a) (b)

[
Ny ,
» A v
[
- I .
T I ,’/ |
z -
,f’,’i’ T Nx +(}Nx dx
Y I ax
P
Ny +%dy
> (c)

Figure 2. Pasternak model (1954): (a) basic model, (b) stress state of infinitesimal element of shear
layer, and (c) forces acting on the shear layer element

The governing equation for the two-parameter Pasternak model is:

q(x,y) = k,w(x,y) — k,V*w(x,y) (20)

Where V7 is the Laplace operator,

g = Applied load; k,, and k, are Winkler and Pasternak foundation parameters respectively
and w = deflection.

The Pasternak model is the most reasonable, generalized two-parameter model and is easily
conceivable for geotechnical applications as ground exhibits compressibility and deforms in
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shear (Madhav, 1998). The expression of strain energy due to Pasternak foundation can be
expressed as:

Up =301, [wa,g + K, {(‘;—V:)z + (Z—”y”)z}] dxdy 1)

3.1. The general governing Equations for Thick Plates on Elastic Foundation

To solve the problems of plates on elastic foundations, the usual approach is based on the
inclusion of the foundation reactions into the corresponding differential equations of plates
(Husain et al., 2007). Hence, the equation of thick plate — soil system:

N=U+V+Up= gfx fy “Al (ZZT\Z)Z —2A, - 66(2:; (axz) +A;- (?x ] [2A1 W)Z _

0x0y
(005 2Pw o, 00y OPw 62w 2, 90y 02w a9, ‘
282 %) omay ~ 202 %y axay] T [Al 2) 28,5552 T s ( ) + (1 +p [A3

] ol (02 4, ()]0 ol ara 1.5

K, {(2—:)2 + (2—‘;)2}] dxdy —q [, fy wdxdy (22)

Let the domain of x and y be; x = aR ; y = bQ respectively. Since P = g, ~ b= Pa,% = %,
1 _a* 1 _a* 1 _a

p?2 b2’ P+  p*’pd b3
Letw = wy.wy; Oy = Byy - Drxs; By = Dy - Dy,

. L . dn . . .
Executing closed domain integration on = expressed in non-dimensional terms, and
w

letting w = J; h we obtain;

f Ozwy d
1 fo(aRz )dR o 302 )% 5y

oh doh
= = —=C, - J,==],= 23
Q)x Q)xy Q)xx aZk% fo (a@xx) 0 fo (azggy)dQ OR a ]1 dx .]2 dx ( )
2
Iy <6aozy>dR N Pw)ar P on oh
@y:(ayx-(byy_ ns” (6R ) _W:ijlazj?:a (24)

PZaZkZ fo (aayy) 0 fg (0 <2)yx> R aQ

Inserting the values of w, @, and @,, into equation (22) and expressing in non-dimensional
terms, we obtain equation (25).

258\ 2
=20 g0 0y (0300 = 2t + ) (58) + G20 = 2t + 200 5 ()
@201 = 2Jufabe = 2sha) - 55 (G 5a) + (L aJadss 'i(% 55) +

[(1 *) Uz +/3 As)] Eitd ZZZ) vect (122) - 000 () +
< (55 gzap (2 ]deQ #2031y (Kwabjh® + eyabj? {(‘”‘) +(2) }) dRdQ —

qabjy f, J; h 5R aQ (25)



European Journal of Engineering Science and Technology, 4(4): 1-14, 2021

Adopting Ritz method of total energy minimization, the general governing equation for thick
plates on elastic foundations is obtained by differentiating the total potential energy with
respect to the coefficients of deflection w, shear rotation in x -axis @, and shear rotation in y-

axis @,, to yield three simultaneous equations. i.e. ? =0;—=0a d —=0.
1 3

azh\?

D (=) (S8 +(/1A1—13A2)i(d—Qz) +(21 By — JoBy — J5B7)
L (L2 20 drdQ + ki f; [y WdRAQ + Iy S, [y {(%2) + ()} drag =

qf, J, [h19R3Q (26)
N (G Y i WY B j;) $ O g L (e

)+ (52) Ua9) - 55 (G- 5) +o (5 ) (20 (5 ]deQ—O @7)
2o 5 [+ ) 5 (58) + o 'i(% ' Z;) + 00000 (G

) (50 o] 5 (5 550) + 5 (52) st (§5) [ ara =0 @8)

Lethy = [} f) (22) 0R0Q: A, = f} J} (S22 oraq; & = [} ) (Ze) R0

(7 o2 . 1t ohy? . tt ; Lt
A4=j (ﬁ) aRaQ;A5=f ] (%) 6R6Q;A6=f f h?9RAQ; A7=f J hdRQ
0 0 Yo 0 Yo 0 Yo

Equations (26), (27) and (28) can be expressed in matrix form as;

w11 W1z W13 ”
W31 W3y W33 F (29)
W31 W3z W33
Where:
24 A o A
w3 = A (R +224+22) + By +hp(Re+Ag): wip = = =0, (A +32)  (30)
A 1+ o
wy3 = Az; = -4, (PZ + Pi) ; W3 = W3y = (;f;) Azl (31)
o 1— o 1— o
wyz = Rihs + (35) Aoty + (5F) o2 Ay, (32)
A
(U33 = (ZPZ)A2A3 + = 3 A3 + (2 2) 0(2 A5A4 . A7 = f f haR aQ (33)
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4. Results and Discussion

4.1. Simply Supported (SSSS) Edge Condition
The boundary conditions for SSSS edge are as follows;

b A b I
- # | Fd
ffr————————————= 9
| T
| I : Simply Supported
| | I Edge
| I |
| I |
| |
al |1 |
: | ) —
| | &% 2 £ 2 2% £ &
| | I a e
| | L K A
I I Section A-A
~ h e e e — J
>A

Figure 3. Simply supported edge condition

I. AtR =0andatR = I, the deflection w, =0

II. AtR=0andatR = I, Bending moment = 0, i.e. % =0

Substituting conditions:

a,=0;a,=0;a;3 =—2a,and a; = a,

wy, = a,(R — 2R3 + R%) (34)

Similarly, we can obtain:

wy = b,(Q — 20° + Q¥ (35)
4.1.1. SSSS Rectangular Plate Particular Shape Function

The deflection equation is obtained by multiplying equations (34) and (35).
w=a,(R—2R3>+R*) - b,(Q —2Q3 + Q%) (36)
However since; w = Ah = A(R — 2R3+ R*) - (Q — 203 + Q%)

Where; A = azb, And h = (R — 2R3+ R*%)-(Q — 203+ Q%

h is the shape function for SSSS thick plate, ‘A’ is the coefficient of deflection. Upon
substitution and simplification we obtain;

A, =023619; A, =0.23592; A; = 0.23619; A, =0.0239; A; = 0.0239; A, = 0.002421; &, =
0.04

And as already established A; = 1, A,= 0.805; A; = 0.655; A, = 6.48 and x = % and p =
b

a
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4.1.2. Numerical Example

The deflection at the center of SSSS isotropic thick plate, the in-plane stresses and the
vertical shear stresses at the edges of the plate for different span to depth ratio corresponding

to different values of g, k,, and k,, subjected to a uniformly distributed load g and 1 = 0.3 is
shown in Table 1.

Results are presented in the form:
_ _E — Et? - — t?
w=—w (uv) = $(u, v); (64,0y) = e (04, 0y)

t? - = t
xy — @Txy (sz, Tyz) = q_a (T2 Tyz)

Table 1.

Results for non-dimensional stresses for SSSS plate on Pasternak foundation (p =1, p = 2)

a

_ _a b\ =0 by _ _ —0): (5.3 _a b _
wat(x—f,y—i),uat(x— ,y—E),vatat(x—E,y— ),(ax,ay)at(x—E,y—z),txyat(x

_ b\ _ a
=0y =0) ;T,,at (x =0y =E> ; Ty at (x =5y =0) and (p=

a
= 1) subject to uniformly distributed load, q

k, k, «a w u v G, o, Tay Tox Ty,
5 0.055350  -0.07491 -0.07491  0.321046  0.321046 -0.1844  0.388893  0.388893
10 0.047724  -0.07294 -0.07294  0.312601  0.312601  -0.17955  0.389601  0.389601
0 50 0.045278  -0.07231 -0.07231  0.309892  0.309892  -0.17799  0.389829  0.389829
100 0.045202  -0.07229 -0.07229  0.309808  0.309808  -0.17794  0.389836  0.389836
1000 0045176 -0.07228  -0.07228  0.309780  0.309780  -0.17792  0.389838  0.389838
5 0.001708  -0.00231  -0.00231  0.009904  0.009904  -0.00569  0.011997  0.011997
10 0.001699  -0.00260 -0.00260  0.011130  0.011130  -0.00639  0.013871  0.013871
0 10000 50 0.001696  -0.00271  -0.00271  0.011607  0.011607  -0.00667  0.014601  0.014601
100 0.001696  -0.00271  -0.00271  0.011623  0.011623  -0.00668  0.014625  0.014625
1000 0.001696 -0.00271 -0.00271  0.011628  0.011628  -0.00668  0.014633  0.014633
5 0.000176  -0.00024  -0.00024  0.001019  0.001019  -0.00059  0.001234  0.001234
10 0.000176  -0.00027  -0.00027  0.001150  0.001150  -0.00066  0.001433  0.001433
100000 50 0.000176  -0.00028  -0.00028  0.001201  0.001201  -0.00069  0.001511  0.001511
100 0.000176  -0.00028  -0.00028  0.001203  0.001203  -0.00069  0.001514  0.001514
1000 9000176  -0.00028 -0.00028  0.001203  0.001203  -0.00069  0.001515  0.001515
5 0.001676  -0.00227 -0.00227  0.009718  0.009718  -0.00558  0.011772  0.011772
10 0.001667 -0.00255 -0.00255  0.010922  0.010922  -0.00627  0.013612  0.013612
10000 50 0.001664 -0.00266 -0.00266  0.011391  0.011391  -0.00654  0.014329  0.014329
100 0.001664  -0.00266 -0.00266  0.011406  0.011406  -0.00655  0.014353  0.014353
0 1000 001664 -0.00266 -0.00266  0.011411  0.011411  -0.00655  0.014360  0.014360
5 0.000175  -0.00024 -0.00024  0.001017  0.001017  -0.00058  0.001232  0.001232
10 0.000175  -0.00027 -0.00027  0.001148  0.001148  -0.00066  0.001430  0.001430
100000 50 0.000175 -0.00028 -0.00028  0.001199  0.001199  -0.00069  0.001508  0.001508
100 0.000175  -0.00028  -0.00028  0.001201  0.001201  -0.00069  0.001511  0.001511
1000 0.000175 -0.00028 -0.00028  0.001201  0.001201  -0.00069  0.001512  0.001512
5 0.001645  -0.00223  -0.00223  0.009539  0.009539  -0.00548  0.011555  0.011555
10 0.001637  -0.00250 -0.00250  0.010722  0.010722  -0.00616  0.013363  0.013363
20 10000 50 0.001634 -0.00261 -0.00261  0.011182  0.011182  -0.00642  0.014067  0.014067
100 0.001634  -0.00261 -0.00261  0.011197  0.011197  -0.00643  0.014090  0.014090
1000 0001634 -0.00261 -0.00261  0.011202  0.011202  -0.00643  0.014098  0.014098
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5 0.000175 -0.00024 -0.00024  0.001015  0.001015  -0.00058  0.001229  0.001229
10 0.000175  -0.00027 -0.00027  0.001145  0.001145  -0.00066  0.001427  0.001427
100000 30 0.000175  -0.00028 -0.00028  0.001197  0.001197  -0.00069  0.001505  0.001505

100 0.000175 -0.00028 -0.00028  0.001198  0.001198  -0.00069  0.001508  0.001508
1000 0000175 -0.00028 -0.00028  0.001199  0.001199  -0.00069  0.001509  0.001509

_ a b b\ _ a L a
w at (x =E,y =E> ;uat (x =0y =E) ;vatat (x =E VY = 0) ;(ax,ay) at (x =E,y
b _ _ b\ _ a
=E) s Tyat(x = 0,y =0) ;T at (x =0,y =E) ; Tyz at (x =5Y
= 0) and (p = g = 2) .subject to uniformly distributed load, q
k, k, @ w u v G, o, Toy Tyx T),
5 0.131911 -0.18921  -0.0473  0.670556  0.343075  -0.23288  0.622423  0.311212
10 0.119703  -0.18606 -0.04651  0.659377  0.337355  -0.22899  0.623154  0.311577
0 50 0.11579  -0.18505 -0.04626  0.655794 0335522  -0.22775  0.623389  0.311694
100 0.115668 -0.18501 -0.04625  0.655682  0.335465  -0.22771  0.623396  0.311698
1000 0115627  -0.185 -0.04625  0.655645 0335446 -0.2277  0.623398  0.311699
5 0.001739  -0.00249 -0.00062  0.008838  0.004522  -0.00307  0.008204  0.004102
10 0.001736  -0.0027 -0.00067  0.009565  0.004894  -0.00332  0.009039  0.004520
0 10000 50 0.001736  -0.00277  -0.00069  0.009829  0.005029  -0.00341  0.009344  0.004672
100 0.001735 -0.00278 -0.00069  0.009838  0.005033  -0.00342  0.009353  0.004677
1000 0001735 -0.00278 -0.00069  0.009841  0.005035  -0.00342  0.009357  0.004678
5 0.000176  -0.00025 -6.3E-05  0.000894  0.000458  -0.00031  0.000830  0.000415
10 0.000176  -0.00027 -6.8E-05  0.000969  0.000496  -0.00034  0.000916  0.000458
100000 50 0.000176  -0.00028 -7E-05  0.000996  0.000510  -0.00035  0.000947  0.000474
100 0.000176  -0.00028  -7E-05  0.000997  0.000510  -0.00035  0.000948  0.000474
1000 000176 -0.00028  -7E-05  0.000998  0.000510  -0.00035  0.000948  0.000474
5 0.001705  -0.00245  -0.00061 0.00867  0.004436  -0.00301  0.008047  0.004024
10 0.001703  -0.00265 -0.00066  0.009382  0.004800  -0.00326  0.008867  0.004433
10000 50 0.001702  -0.00272 -0.00068  0.009642  0.004933  -0.00335  0.009165  0.004583
100 0.001702  -0.00272  -0.00068 0.00965  0.004937  -0.00335  0.009175  0.004588
0 1000 0001702 -0.00272  -0.00068  0.009653  0.004939  -0.00335  0.009178  0.004589
5 0.000176  -0.00025 -6.3E-05  0.000893  0.000457  -0.00031  0.000829  0.000414
10 0.000176  -0.00027 -6.8E-05  0.000967  0.000495  -0.00034  0.000914  0.000457
100000 50 0.000176  -0.00028  -7E-05  0.000994  0.000509  -0.00035  0.000945  0.000473
100 0.000176  -0.00028  -7E-05  0.000995  0.000509  -0.00035  0.000946  0.000473
1000 0.000176  -0.00028  -7E-05  0.000996  0.000509  -0.00035  0.000947  0.000473
5 0.001673  -0.0024  -0.0006  0.008507  0.004352  -0.00295  0.007896  0.003948
10 0.001671  -0.0026 -0.00065  0.009206  0.004710 -0.0032  0.008701 0.00435
10000 50 0.001671  -0.00267 -0.00067  0.009461  0.004841  -0.00329  0.008994  0.004497
100 0.001671  -0.00267  -0.00067 0.00947  0.004845  -0.00329  0.009003  0.004502
20 1000 0001671 -0.00267 -0.00067  0.009472  0.004846  -0.00329  0.009006  0.004503
5 0.000175 -0.00025 -6.3E-05  0.000891  0.000456  -0.00031  0.000827  0.000413
10 0.000175 -0.00027 -6.8E-05  0.000965  0.000494  -0.00034  0.000912  0.000456
100000 50 0.000175  -0.00028 -7E-05  0.000992  0.000508  -0.00034  0.000943  0.000472

100 0.000175 -0.00028  -7E-05  0.000993  0.000508  -0.00034  0.000944  0.000472
1000 0000175 -0.00028  -7E-05  0.000994  0.000508  -0.00035  0.000945  0.000472

From Table 1, the effect of the foundation modulus of subgrade reaction, span-depth ratio and
aspect ratio of the plate can be observed. The value of in-plane quantities and that of out-of-
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plane quantities generally reduced as the foundation modulus increased. Similarly, it is
observed that as the span-depth ratio increases, values of in-plane quantities and that of out-
of-plane quantities decreases for each aspect ratio, p. It can also be observed generally that as
the aspect ratio increases, the values of in-plane quantities and that of out-of-plane quantities
increases. However, worthy of note is that in-plane quantities being functions of x, y and z,
vary linearly with the plate thickness but the out-plane displacements, function of only x and
¥, do not vary linearly with the plate thickness.

Table 2.
Results for non-dimensional stresses for SSSS plate
w u o, c T, T
Study kyk,o _ 100E® Ef2 ¢ " 2 "2 _int fl:ate
"~ Ta T ad" T a@% To@® “g@™ “ga "
Present study 4772441 -0.07294 0312601 0.312601 -0.17955  0.389601 TRDT
Et’e:l‘mgbulem 47723 0.073 03127 03127  -0.1796  0.392 TRDT
% difference -0.00295  0.082192 0.03166 0.03166  0.02784  0.61199
Karama 4.797 0.0723 03243 03243 01746 03909  TSDT
% difference 0511966  -0.8852 3.607462 3.607462 -2.83505  0.33231
Mindlin 00 10 46701 00741 0287 - 01951 03331  FSDT
% difference 219141 1.565452 -8.92021 - 7.970272  -16.9622
Reddy 4.666 20.075  0.289 - 202031 0.492 HSDT
% difference 22812 2746667 -8.16644 - 11.59527  20.8128
Kirchoff 4.436 0.0723  0.287 0.287 -0.195 0 CPT
% difference 758433 -0.8852 -8.92021 -8.92021 7.923077 100
present 4520167  -0.07229 0.309808 0.309808 -0.17794  0.389836 TRDT
Bt’?l‘r“gbulem 4.5203 0.0723 03099 03099  -0.178 03802  TRDT
% difference 0.002942  0.013831 0.029687 0.029687 0.033708  -2.53446
Karama 4.5201 0.0723 03098 03098  -0.1779 0392 TSDT
% difference -0.00148  0.013831 -0.00258 -0.00258 -0.02248  0.552041
Mindlin 00 100 4 546 00714 03203 03203 -0.1725 03909  FSDT
% difference 0.568258  -1.2465 3275679 3275679 -3.15362  0.272192
Reddy 4.546 0.0714 03203 03203  -0.1725 03892  HSDT
% difference 0.568258  -1.2465 3.275679 3275679 -3.15362  -0.16341
Kirchhoff 4.5201 0.0723 03099 03099  -0.179 0 CPT
% difference -0.00148  0.013831 0.029687 0.029687 0.592179 100

Table 2 shows a comparison of the results obtained without the influence of foundation
parameters k,, and k,, it is observed that results obtained in this study converges with that
obtained in third order deformation theories while significant difference was observed in
higher order shear deformation theory, classical plate theory and first order deformation
theory. This may be due to the fact that the classical plate theory and the first order shear
deformation theory do not exactly inculcate the shear deformation shape function. Worthy of
note is the fact that there was approximately no difference between the out-of-plane
displacements and in-plane obtained in this study and that obtained using the classical plate
theory at span-depth ratios of 100 and above. This further validates the consideration of
plates as thin for span-depth ratio of 100 and above.
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When compared with finite element analysis, the difference between the deflection results
obtained from this study and finite element analysis without the consideration for foundation

parameters is shown in Table 3.

Table 3.

Comparison of values obtained in this study with FEM

Deflection from

a Thickness of plate resent stud Deflection from Percentage
(mm) p y FEM (mm) difference
(mm)
5 1000 0.013837 0.0144 -4.068%
10 500 0.095448 0.097 -1.626%
50 100 11.3195 11.225 0.8348%
100 50 90.404 89.523 0.9745%
1000 5 90352 89429.482 1.021%
a=b=5m; E=2.5x 10" kN/m? u=0.3
100
90 )
80
70 /
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£ 60 4 btuﬁr
= /| --#--FE
2 50
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Figure 4. A graph of deflection obtained in this study and that obtained with FEM

5. Conclusion

Analysis of thick plates resting on Winkler-Pasternak two parameter foundation using
characteristic orthogonal polynomials was carried out in this study. The shape function
derived from the Soldatos (1992) trigonometric shape function was found to be sufficient and
satisfactory for obtaining the solution to plates on elastic foundation and the resulting
governing equations can be satisfied throughout the domain of the plate. The method
proposed in this study provides a simplified method as only definite integration is needed to
obtain solutions.

Energy approach (Ritz method) was also found to be satisfactory in determining the potential
energy of the thick plate resting on Winkler-Pasternak elastic foundation under different
boundary conditions. Foundation parameters greatly affected the in-plane and out-of-plane
displacements of the plates. As the foundation modulus of the soil increased, the in-plane and
out-of-plane displacements of the plates decreased.

At span-depth ratios of 100 and above, the in-plane and out-of-plane displacements of the
plates obtained in this study were approximately the same with those obtained in the Classical
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plate theory (CPT). This further validates the fact that plates with span-depth ratios of 100
and above, a plate is considered to be thin.
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