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 In 

In this research an alternative technique to Gauss Elimination Method 

forDeterminants is presented.It gives exact determinants.It is free of 

fractions, free of round off errors and can be applied for all types of  

square matrices.This alternative technique is illustrated through four 

different examples. 

 
Introduction 

In civil engineering applications, the linear system of algebraic equations, AX = B, arises, for example, 

in the solution of ordinary and partial differential equations, interpolation, curve fitting, networks of 

roads and Truss problem. If the determinant of the coefficient matrix A≠ 0, the system has unique 

solution and if A= 0, the system has either no solution or infinitely many solutions [1]. The square 

matrix A has inverse if the determinant A≠ 0, and it is not invertible if A= 0 [2]. Thus, before 

using analytical or numerical methods to solve the linear system of algebraic equations or to find A-1 it 

is better to find the determinant value.   

Determinants of 2nd order are evaluated analytically by the diagonal method. Determinants of 3rd order 

are evaluated analytically by the diagonal method or Laplace expansion method (also called the cofactors 

method) ([2]-[4]). Determinants of order 4 or higher can be reduced to 3rd or 2nd ordered determinants 

using Laplace expansion method ([2], [3], [5]). Because of the high amount of work needed to reduce 

the high ordered determinants to 3rd or 2nd ordered determinants, Laplace expansion method is considered 

impractical and is not recommended for high ordered determinants ([6], [7]). Therefore, for high ordered 

determinants numerical methods are used.  
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Gauss elimination method is a numerical method used to find the value of a determinant |A|. The basic 

idea of Gauss elimination method is transforming the original determinant |A| to upper triangular one 

|U| and then finding the determinant |A| value by multiplying the main diagonal numbers of |U|. If partial 

pivoting is used then the value of the determinant is the negative of the original determinant.   

Classification Gauss elimination method involves fractions (if hand calculations are used) or decimal 

numbers through transformation process of |A| to |U|. Dealing with fractions is not comfortable and 

working with decimal numbers may lead to round off errors which lead to get approximate values of 

determinants. For example, by using Gauss elimination method the determinant value of  

|𝐀|  = |
0.05 −0.03

−0.05 0.03
| 

is |A| = 2.77556E-18 ([8], Example, Page 86). It is clear that the analytical evaluation of the determinant 

using the diagonal method gives |A| = 0. This is due to the round off errors result from the numerical 

technique used. Using the alternative technique presented in this research, we get precisely |A| = 0.  

In this research an alternative technique to Gauss Elimination Method for determinants is presented. It 

is free of fractions, free of round off errors, reliable and can be applied for all types of square matrices. 

All the entries from the original determinant |A| to |U| are integers without fractions or decimal numbers 

and this is the reason of calling it “Integers Version.” The determinant value is a rational number found 

at the last step. The result is either ending or repeating number. Therefore, we get exact determinants. 

2 Literature review and Comments 

The following are the techniques used to find the determinant value by Gauss Elimination Method (in 

this research it is called the traditional Gauss Elimination Method for determinants):  

2.1 The determinant of a square matrix is transformed to upper triangular determinant with no row 

interchanges (partial pivoting) [6]. Then, the product of the main diagonal elements of the upper 

triangular determinant gives the determinant value. This technique works well when all the entries from 

the original determinant |A| to |U| are integers and there is no zero pivot number, otherwise this technique 

will involve fractions or decimal numbers which may lead to round off errors. Thus, approximate value 

of a determinant is obtained.  

2.2 To reduce the round off errors in the previous technique, Gauss Elimination Method with partial 

pivoting is used to transform the determinant of a square matrix to upper triangular determinant, ([2], 

[8]-[12]). In this technique, the determinant changes sign every time a row is switched. This technique 

may involve fractions or decimal numbers and thus it reduces the round off errors but not eliminate 

them. 

2.3 In this technique the original matrix is transformed to upper triangular matrix with all main diagonal 

elements equal to 1 except the last element unn using properties of determinants [13]. This technique may 

involve fractions or decimal numbers and thus it is subject to round off errors and needs a lot of work. 

2.4 In this technique the determinant is transformed to unit upper triangular determinant (the main 

diagonal contains all 1’s) using pproperties of determinants ([14], [15]). This method involves fractions 

or decimal numbers and thus it may be subject to round off errors. 
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2.5 In this method the square matrix A is factored according to Doolittle’s factorization method PA = 

LU, where P is a permutation matrix, L is a unit lower triangular matrix (with ones on the main diagonal) 

and U is upper triangular matrix with the pivots on its main diagonal ([7], [16]-[24]). This method is 

adopted by MATLAB ([25]-[27]. An advantage of this two-step approach is that if further linear systems 

involving A are to be solved then the LU factors can be reused, with a saving in computation [25]. The 

computation of the determinant |A| is affected by rounding errors in general [25]. 

It is to note that this literature review involves only the techniques used to find the determinant value 

by the traditional Gauss Elimination Method. Other methods, such as Sivanandam and Bai method 

[28] which is also subject to rounding errors, are outside the scope of the present research.   

3  The Alternative technique to Gauss Elimination Method for Determinants: Integers Version 

In this alternative technique the determinant |A| is transformed to upper triangular determinant |U| 

using properties of determinants and without pivoting (partial or complete) or scaling. In applying this 

technique there is no chance to the hand calculator or the computer to round off the numbers and thus 

we get exact determinants. The elements of the original determinant |A| must be integers and all 

elements in any stage through transforming process of the original determinant to upper triangular one 

are integers. The value of the upper triangular determinant will be integer since all the main diagonal 

elements are integers. By this technique we avoid round off errors. The value of the determinant |A| is 

found at the last step. It is rational number and the result will be a number which is of ending or repeating 

type.  

The following is the procedure of the alternative technique to Gauss Elimination Method for 

Determinants: Integers Version 

1. The elements of the original determinant |A| must be integers.  

 This is a difference between the alternative and the traditional techniques of Gauss Elimination 

Method for Determinants. The traditional technique of Gauss Elimination Method for Determinants does 

not impose that the elements of the original determinant |A| must be integers. 

2. At any stage of the solution process the main diagonal element (the pivot number) aii must be integer 

and ≠ 0. 

 This is a difference between the alternative and the traditional techniques of Gauss Elimination 

Method for Determinants. The traditional technique of Gauss Elimination Method for Determinants does 

not impose that the main diagonal element (the pivot number) aii must be integer. 

If the main diagonal element aii = 0 then exchange row i with any row below it for which ami ≠ 0 and set 

Si = 1 where Si refers to the change of the determinant sign. This is based on the determinant property: 

If two rows are interchanged, the new determinant is the negative of the old one. If there is no rows 

interchange set Si = 0. If all the elements below aii = 0 are zeros, then |A| = 0.  

3. Transform |A| to upper triangular determinant |U| using the following equation for every row except 

the pivot row 
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Ri)new = Ri)0ld − kmi Rk ((1) 

Where Ri)new are the new elements of any row, Ri)old are the old elements of the same row, Rk are the 

elements of the pivot row and kmi = ami/ aii where aii is the pivot element and ami is the element below aii 

of row Ri)old. This equation is based on the determinant property: The determinant value is unchanged if 

a row is added to another row multiplied by a scalar. 

kmi must be integer. If kmi is not integer, multiply Ri)old by |aii| and set Mi = |aii| where Mi refers to the 

multiplication of the determinant by the constant |aii|. This is based on the determinant property: If one 

row is multiplied by a constant, the new determinant is the old one multiplied by that constant. Then use 

Eq.1. By this procedure kmi will always be integer. This is a difference between the alternative and the 

traditional techniques of Gauss Elimination Method for Determinants. The traditional technique of 

Gauss Elimination Method for Determinants does not impose that kmi must be integer.   

4. Find |A| value using Eq.2 

 

|𝐀| =
S |𝐔|

M
 ((2) 

Where  

S is the function counts sign changes, S = (−1)∑ 𝑆𝑖. If ΣSi = odd number then S = -1 and if ΣSi = zero 

or even number then S = 1.  

|U| = ∏ 𝑢𝑖𝑖

𝑛

𝑖=1

                                                   (3) 

This is based on the determinant property: The value of upper triangular determinant is equal to the 

product of its major diagonal elements. 

M is the multiplication function (= ∏ 𝑀𝑖
𝑛
𝑖=1 ). For the case of no multiplication set M = 1. 

5. The use of Greatest Common Divisor (GCD) 

This is an optional step. 

For big determinant entries we can use the greatest common divisor since all the elements in any 

step are integers. This will make the big numbers smaller and it is especially useful to those using 

hand calculations with the aid of hand calculators. For the case of using the greatest common divisor, 

Eq.2 is modified to Eq. 4  

|𝐀| =
S |𝐔|G

M
 ((4) 
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where G = the greatest common divisor (GCD). This is based on the determinant property: If one row 

is multiplied by a constant, the new determinant is the old one multiplied by that constant. Example 

4 shows the use of the greatest common divisor. 

4 Examples 

The Alternative technique to Gauss Elimination Method for Determinants: Integers Version is 

applied to many determinants with different orders (small and high ordered determinants) and 

excellent results were obtained. For this research, simple examples are selected in order to clarify this 

alternative technique. 

Example 1: Application for the case S = 1 and M = 1 ([23], Example 1, Page 713 with 

modification)  

𝐄𝐯𝐚𝐥𝐚𝐭𝐞 |𝐀|  = |

0.1 0.2 0.3

4 5 6

7 8 0

|       

Solution 

According to step 1 of the procedure of the alternative technique, the elements of the original 

determinant must be integers, we multiply R1 by 10 to get   

|𝐁|  = |

1 2 3

4 5 6

7 8 0

| 

We find the value of the determinant |B| then we find the value of the determinant |A| as follows: 

(1) The original 

determinant |B| 

Notes 
k M S 

1 2 3 R1
(1)    

4 5 6 R2
(1) 

k21 = 

4 

  

7 8 0 R3
(1) 

k31 = 

7 

  

(2)   M1 = 

1 

S1 = 

0 

1 2 3     

0 -3 -6 
R2

(2) = R2
(1) – 

4 x R1
(1) 

   

0 -6 -21 
R3

(2) = R3
(1) – 7 

x R1
(1) 

k32 = 

2 

  

(3) 
  M2 = 

1 

S2 = 

0 

1 2 3     

0 -3 -6     
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0 0 -9 
R3

(3) = R3
(2) – 2 

x R2
(2) 

   

|U| =1 X -3 X -9 = 27   
 M = 

1 

ΣSi = 

0 

 

ΣSi = S1 + S2 = 0 + 0 = 0. Since ΣSi = 0 then S = (−1)∑ si= 1.  

M = ∏ 𝑀𝑖
𝑛
𝑖=1  = M1 X M2 = 1 X 1 = 1.  

|𝐁| =
S |𝐔|

M
=

1 X 27

1
= 27 

|A| = |B|/10 = 27/10 = 2.7.  

This is based on the determinant property: If one row is multiplied by a constant, the new determinant 

is the old one multiplied by that constant. 

 Notes:  

1. R1
(1) and R1

(2) mean row 1 at first and second stages respectively. This definition is also used for 

other rows. Rows with blank definition mean that there are no changes occur to these rows in these 

stages.  

2. The sequence of calculations and details are as follows: 

In stage 1: 

k21 = a21/a11 = 4/1 = 4 and k31 = a31/a11 = 7/1 = 7. S1 = 0 since there is no rows interchange and M1 = 

1 because k21 and k31 are integers. 

In stage 2: 

The first row elements R1
(2) are the same as the first row elements in stage 1 (R1

(1)), thus R1
(2) is not 

defined and the space left blank. 

For the second row R2
(2): the details of R2

(2) = R2
(1) – 4 x R1

(1) are 

R2
(1)            

4 

 

5 
6 

- 4 X 

R1
(1) 

- 4 X 

(1 

 

2 
3) 

R2
(2)           

0 

-

3 

-6 

For the third row R3
(2): the details of R3

(2) = R3
(1) – 7 x R1

(1) are 



 Journal of Advanced Research in Civil Engineering and Architecture, 1 (1):10-23, 2019 

 

15 

R3
(1)           

7 

 

8 
 0 

- 7 X 

R1
(1) 

- 7 X 

(1 

 

2 

 

3) 

R3
(2)           

0 

-

6 

-

21 

k32 = a32/ a22 = -6/-3 = 2. M2 = 1 because k32 is integer. 

S2 = 0 since there is no rows interchange. 

In stage 3: 

R1
(3) and R2

(3) elements are the same as R1
(1) and R2

(2) respectively, therefore they are not defined 

and the spaces left blanks. 

For the third row R3
(3): the details of R3

(3) = R3
(2) – 2 x R2

(2) are 

R3
(2)           

0 

-

6 

-

21 

- 2 X 

R2
(2) 

- 2 X 

(0 

-

3 

-

6) 

R3
(3)           

0 

 

0 

-9 

In this stage we obtain upper triangular determinant, so we compute its value as shown in the previous 

table. The remained calculations for finding the value of the determinant |A| are shown below the 

previous table. 

3. In this example the alternative and the traditional techniques of Gauss Elimination Method for 

Determinants give the same value of the determinant because all the entries from the beginning to the 

end are integers. 

Example 2: Singular matrix ([27], Example, Page 88, [29], Example, Page 665)  

𝐄𝐯𝐚𝐥𝐚𝐭𝐞 |𝐀|  = |

1 2 3

4 5 6

7 8 9

|       
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Solution 

(1) The original 

determinant |A| 

Notes 
k M S 

1 2 3 R1
(1)    

4 5 6 R2
(1) 

k21 = 

4 

  

7 8 9 R3
(1) 

k31 = 

7 

  

(2)   M1 = 

1 

S1 = 

0 

1 2 3     

0 -3 -6 
R2

(2) = R2
(1) – 

4 x R1
(1) 

   

0 -6 -12 
R3

(2) = R3
(1) – 7 

x R1
(1) 

k32 = 

2 

  

(3) 
  M2 = 

1 

S2 = 

0 

1 2 3     

0 -3 -6     

0 0 0 
R3

(3) = R3
(2) – 2 

x R2
(2) 

   

|U| = 1 X -3 X 0 = 0  
 M = 

1 

ΣSi = 

0 

Since ΣSi = 0, then S = (−1)∑ 𝑠𝑖= 1.  

M = ∏ 𝑀𝑖
𝑛
𝑖=1  = M1 X M2 = 1 X 1 = 1.   

|𝐀| =
S |𝐔|

M
=

1 X 0

1
= 0 

Note: The sequence of calculations and details are like that of Example 1. 

Discussion: This example was solved using MATLAB and the following message appeared 

“Warning: Matrix is close to singular or badly scaled.” Thus, MATLAB does not exactly tell us 

whether the matrix A is singular. This is due to the round off errors result from the numerical method 

used. By using Excel we obtain |A| = 6.66134E-16. This is also due to the round off errors result from 

the numerical method used.  

Another subject relates to small values of determinants is the ill-conditioned matrix for which the 

determinant value is very small [5]. Small determinant does not mean that the matrix near singularity 

[18]. The Vandermode matrices tend to be ill-conditioned [21]. The value of the Vandermode 

determinant of a system of linear algebraic equations is small but there is a solution to the linear 
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system of algebraic equations. Thus, obtaining |A| ≅ 0 does not mean that the system has either many 

solutions or no solution at all. In civil engineering applications, for example in the networks of roads, 

we need exactly to know if |A| = 0 in order to investigate the many solutions of the problems. The 

proposed alternative technique to Gauss Elimination Method for Determinants avoids the round off 

errors and enables us to get exactly zero value for the determinant of a singular matrix and a small 

value for ill-conditioned matrix. 

Example 3: Application of S and M ([6], Example 1.9, Page 47) 

 

𝐄𝐯𝐚𝐥𝐚𝐭𝐞 |𝐀| = |

0 2 1

4 1 −1

−2 3 −3

|       

Solution 

(1) The original 

determinant |A| 

Notes 
k M S 

0 2 1 R1
(1)    

4 1 -1 R2
(1)    

-2 3 -3 R3
(1)    

(2)   M1 = 

1 

S1 = 

1 

4 1 -1 R1
(2) = R2

(1)    

0 2 1 R2
(2) = R1

(1) k21 = 0   

-2 3 -3  k31 = -2/4 M23 = 

4 

 

(3)   M2 = 

4 

S2 = 

0 

4 1 -1     

0 2 1  k21 = 0   

-8 12 -12 R3
(2) = 4 X R3

(1)  k31 = -2   

(4)   M3 = 

1 

S3 = 

0 

4 1 -1     

0 2 1 R2
(3) = R2

(2) – (0) 

R1
(2) 

   

0 14 -14 R3
(3) = R3

(2) – (-2) 

R1
(2) 

k32 = 14/2 

= 7 

  

(5)   M4 = 

1 

S4 = 

0 

4 1 -1     

0 2 1     

0 0 -21 R3
(4) = R3

(3) – (7) 

R2
(3) 

   

|U| = 4 X 2 X -21 = -168   M = 

4 

ΣSi = 

1 
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ΣSi = S1 + S2 + S3 + S4 = 1 + 0+ 0 + 0 = 1. Since ΣSi = 1 then S = (−1)∑ si= -1.  

M = ∏ 𝑀𝑖
𝑛
𝑖=1  = M1 X M2 X M3 X M4 = 1 X 4 X 1 X 1 = 4.   

|𝐀| =
S |𝐔|

M
=

−1 X (−168)

4
= 42 

Notes:  

1. In stage 1 of the solution a11 = 0, therefore, according to step 2 of the procedure of the alternative 

technique, R1 and R2 are interchanged, as shown in stage 2, and S1 = 1. 

2. In stage 2 of the solution k31 = a31/a11 = -2/4 = -0.5. As it is not integer, then, according to step 3 of 

the procedure of the alternative technique, R3 is multiplied by 4 (= |a11|) as shown in stage 3. M23 = 4 

means in stage 2 R3 is multiplied by 4 and M2 = 4 means all the multiplications in stage 2 are equal 

to 4.  

The remained calculations for finding the value of the determinant |A| are as that for the previous 

examples. 

Example 4: Application of the Greatest Common Divisor (GCD) ([6], Example 1.14, Page 55) 

𝐄𝐯𝐚𝐥𝐚𝐭𝐞 |𝐀| = |

80 −20 −20

−20 40 −20

−20 −20 130

|      

Solution 

At first we find the GCD for rows and columns of the original determinant, and then the better one 

is selected. 

The original 

determinant |A| 

GC

D 

for 

rows 

GCD 

for 

column

s 

|B| After using GCD for 

rows 

80 -

20 

-20 20 20 4 -1 -1 

-

20 

40 -20 20 20 -1 2 -1 

-

20 

-

20 

13

0 

10 10 -2 -2 13 

The previous table shows that for this example GCD for rows = GCD for columns. If GCD for 

rows is selected then the resulting determinant is |B| shown in the previous table which has small 

entries.  
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We first find the value of |B| then we find the value of |A|. We can now find the value of |B| using 

GCD or without using GCD since the entries of |B| are small. The following is finding the value of 

|B| using GCD to clarify the details. Only the GCD for rows is used in the evaluation of |B| starting 

from the first pivot row to the last pivot row. This will reduce aii of the pivot row if we need to 

multiply other rows by this number and reduce the elements values of the rows below the pivot row.   

(1) Determinant |B| Notes k M G S 

4 -1 -1 R1
(1)     

-

1 

2 -1 

R2
(1) 

k21 

= -

1/4 

M12 

= 4 
  

-

2 

-2 13 

R3
(1) 

k31 

= -

2/4 

M13 

= 4 
  

(2)   M1 

= 

16 

G1 

= 

1 

S1 

= 0 

4 -1 -1      
-

4 

8 -4 R2
(2) = 4 X 

R1
(1) 

k21 

= -

1 

   

-

8 

-8 52 R3
(2) = 4 X 

R1
(1) 

k31 

= -

2 

   

(3)   M2 

= 1 

G2 

= 

1 

S2 

= 0 

4 -1 -1      
0 7 -5 R2

(3) = R2
(2) – 

(-1) X R1
(1) 

    

0 -

10 

50 R3
(3) = R3

(2) – 

(-2) X R1
(1)  

  G 

33= 

10 

 

(4)   M3 

= 1 

G3 

= 

10 

S3 

= 0 

4 -1 -1      
0 7 -5      
0 -1 5 R3

(4) = R3
(3) / 

10 
k32 

= -

1/7 

M43 

=7 
  

(5)   M4 

= 7 

G4 

= 

1 

S4 

= 0 

4 -1 -1      
0 7 -5      
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0 -7 35 R3
(5) = 7 X 

R3
(4) 

k32 

= -

1 

   

(6)   M5 

= 1 

G5 

= 

1 

S5 

= 0 

4 -1 -1      
0 7 -5      
0 0 30 R3

(6) = R3
(5) – 

(-1) R2
(3) 

    

|U| = 840   M 

= 

112 

G 

= 

10 

ΣSi 

= 0 

Since ΣSi = 0 then S = (−1)∑ si= 1.  

M = ∏ 𝑀𝑖
𝑛
𝑖=1  = 112.   

G = 10 

|𝐁| =
S |𝐔|G

M
=

1 X 840 X 10

112
= 75 

|A| = 20 x 20 x 10 x |B| = 300000 

For comparison the following is the solution of the same example without using GCD 

 

(1) Determinant |A| Notes k M S 

80 -20 -20 R1
(1)    

-20 40 -20 
R2

(1) 
k21 = -

20/80 

M12 = 80  

-20 -20 130 

R3
(1) 

k31 = -

20/80 

M13 = 80 S1 

= 

0 

(2)   M1 = 

6400 

S1 

= 

0 

80 -20 -20     

-

160

0 

3200 -1600 R2
(2) 

= 80 

X 

R2
(1) 

k21 = -20   

-

160

0 

-1600 10400 R3
(2) 

= 80 

X 

R3
(1) 

k31 = -20   

(3)   M2 = 1 S2 

= 

0 
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80 -20 -20     

0 2800 -2000 R2
(3) 

= 

R2
(2) 

– (-

20) 

R1
(1) 

   

0 -2000 10000 R3
(3) 

= 

R3
(2) – 

(-20) 

R1
(1) 

k32 = -

2000/280

0 

M33 = 

2800 

 

(4)   M3 = 

2800 

S3 

= 

0 

80 -20 -20     

0 2800 -2000     

0 -

560000

0 

2800000

0 

R3
(4) 

=280

0 X 

R3
(3)  

k32 = -

2000 

  

(5)   M4 = 1 S4 

= 

0 

80 -20 -20     

0 2800 -2000     

0 0 2400000

0 

R3
(5) 

= 

R3
(4) 

– (-

2000) 

R2
(3) 

   

|U| = 5.376E+12   M = 

1792000

0 

ΣS

i = 

0 

Since ΣSi = 0 then S = (−1)∑ si= 1.  

|𝐀| =
S |𝐔|

M
=

11 X 5.376E + 12

17920000
= 300000 

5 Conclusion 

The alternative technique to Gauss Elimination Method for Determinants presented in this research 

can be used to get exact determinants. There is no need to use pivoting (partial or complete) or scaling 

except when the main diagonal element aii = 0. It is efficient, reliable, and can be applied for all types 

of square matrices. It can also be easily implemented by hand calculations with the aid of hand 

calculator. By this alternative technique we obtain a crucial decision whether the matrix is singular 

or ill-conditioned because it gives exactly zero value for the determinant of a singular matrix and a 

small value for ill-conditioned matrix. 
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Recommendations 

Constructing a software for this alternative technique to Gauss Elimination Method for 

Determinants: Integers Version 
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