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ARTICLE INFO ABSTRACT

Keywords: Cardiac arrhythmias are a disease with considerable incidence and
Cardiac Arrhythmias, prevalence worldwide, and their diagnosis can be complex due to
Electrocardiogram, the existence of different types of arrhythmias that share similar
Machine Learning, characteristics and make an accurate diagnosis difficult. Making a
Deep Learning correct diagnosis of the kind of arrhythmia that affects an

individual is important to define the most appropriate type of
treatment for the case. Machine Learning and Deep Learning
techniques have been proposed to automate the diagnosis of
arrhythmias to assist healthcare professionals in decision-making.
This study proposes a Convolutional Neural Network model for
classifying cardiac arrhythmias using electrocardiogram data. The
objective is to present a model that achieves high accuracy rates
in identifying types of arrhythmias and presents an adequate
balance between performance and computational costs. The model
was trained with a dataset composed of electrocardiogram exams
with 32 types of arrhythmias. In the pre-processing phase, the
dataset was restructured to allow the data to be treated as a time
series to explore the potential of Convolutional Neural Networks
in dealing with data organized in this way. Training was carried
out using a state-of-the-art Deep Learning model and the model
achieved an accuracy rate of 98.37% in its predictions. This
excellent performance confirms the ability of Convolutional
Neural Networks to efficiently deal with pattern learning in time
series. The results obtained demonstrate the potential of Deep
Learning techniques as aiding tools to provide improvements in
medical processes.

1. Introduction

Cardiac arrhythmias are a disease that generates considerable concern and requires careful
diagnosis because they are associated with several risk factors. Some of the associated risk
factors are high blood pressure, high cholesterol, diabetes, obesity, hyperthyroidism,
hypothyroidism, electrolyte disorders, structural heart disease, smoking, alcoholism, anemia,
atherosclerosis, emotional stress, and genetic predisposition. Arrhythmias are classified
according to their level of criticality as benign or malignant. Arrhythmias are considered benign
when they generate unpleasant symptoms but do not pose a risk of death, and they are
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considered malignant when they compromise cardiac function and can even cause sudden death
due to a fulminant heart attack.

Arrhythmias are a disease with considerable incidence and prevalence worldwide. According
to Li et al. (2022), a study that analyzed and calculated epidemiological data related to cardiac
arrhythmias in 204 countries reported an incidence of around 4.72 million cases and a
prevalence of around 59.7 million cases in 2019. The results showed in the study reinforce the
importance of investments in the development of strategies and technologies that can assist
doctors and healthcare professionals in preventing and treating this disease.

There are different types of arrhythmias and there is usually a treatment modality best suited
for each type. According to Kingma et al. (2023), there are treatments based on antiarrhythmic
medications (beta blockers and calcium channel blockers, for example), implantable electrical
devices (pacemakers and defibrillators, for example), medical procedures (cardioversion and
ablation, for example) and surgeries. According to Cruickshank (2008), an accurate diagnosis
of the type of arrhythmia that affects the individual is essential to assess the severity of the
disorder and the associated risks and define the type of treatment most suitable for the case.

This study aims to propose a Deep Learning model for classifying cardiac arrhythmias through
the analysis of data from electrocardiograms. The model must be able to classify
electrocardiogram exams accurately considering different types of arrhythmias. The results
obtained in the study are expected to demonstrate the potential of using Deep Learning
techniques to assist healthcare professionals in diagnosing cardiac arrhythmias. A model that
can accurately classify different types of arrhythmias provides healthcare professionals with a
very useful tool to improve the accuracy of their diagnoses, mitigate the occurrence of errors,
and provide cost reduction by eliminating the need for additional tests to be carried out to define
the specific treatment to be given to each patient. This study also seeks to contribute to
improving the clinical processes involved and the exchange of information between different
professionals by encouraging the use of standardized ways of using Artificial Intelligence
techniques to make diagnoses and conduct treatments in clinical practice.

2. Literature Review

The cardiac cycle is the set of events that occur in the valves and chambers of the heart between
the beginning of a heartbeat and the beginning of the next beat. These events are responsible
for pumping blood to the lungs, where the blood oxygenation process occurs, and pumping
oxygenated blood to the aorta artery, which has the function of ensuring that blood is
transported to the different parts of the organism with the ultimate objective of nourishing cells
and to provide the energy necessary for the proper functioning of all organs. The cardiac cycle
is carried out through movements of contraction (systole) and relaxation (diastole) of the
myocardium. These movements are performed regularly and synchronized to ensure the correct
flow of blood throughout the cardiovascular system.

Cardiac arrhythmias are changes in the rhythm of the heartbeat caused by disorders or diseases
that affect the functioning of the heart. The events of the cardiac cycle occur irregularly or
inappropriately when the body suffers an arrhythmia. These changes create an imbalance in the
body that can range from impaired pumping of oxygenated blood to other organs in the body
to sudden death in more extreme cases. According to Kingma et al. (2023), most arrhythmias
occur as a result of structural abnormalities in the myocardium, but arrhythmias can also occur
due to risk factors derived from genetic or environmental conditions.

Figure 1 shows a representation of the basic anatomy and electrical conduction system of the
heart. The heart is divided into 4 chambers: 2 atria (right and left) and 2 ventricles (right and

15



European Journal of Engineering Science and Technology, 7(2): 14-30, 2024

left). Due to their location, the atria are called upper chambers, and the ventricles are called
lower chambers. Oxygen-poor blood reaches the right atrium through the vena cava and is
drained into the right ventricle to be transported to the lungs through the pulmonary valve and
pulmonary artery. Oxygenated blood reaches the left atrium through the pulmonary veins and
is drained into the left ventricle to be transported throughout the body through the aortic valve
and the aorta artery. The contraction and relaxation movements of the chambers, as well as the
opening and closing events of the valves, are carried out in an orderly and synchronized
manner, and this process ensures that the blood has the correct destination at the correct time.

AV node
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_\ Aorta

SA node

Right atrium —\
Right ventricle \

Bundle of His

Left atrium

/ Left
/\,u\-ﬂlm:u

Left bundle
branch
Right bundle
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Figure 1. Basic anatomy and conduction system of the heart

The conduction system has a set of specialized cells responsible for generating and conducting
electrical impulses that coordinate the systole and diastole movements of the heart chambers.
Electrical impulses propagate across the membrane of each cell due to action potentials that
allow ions to flow through membrane channels. According to Williams (2005), the generation
of action potentials occurs through a set of complex interactions that occur inside and outside
cells involving sodium, potassium, and calcium ions. Action potentials are divided into 2 main
processes: depolarization and repolarization. According to Chakrabarti and Stuart (2005),
initially, the cell is in a state called polarization, also called resting phase, which comprises the
period between two subsequent action potentials and in which the membrane potential
(difference between the intracellular environment and the extracellular environment) has a
negative charge of about -90 mV. The depolarization process occurs when a polarized cell
receives a stimulus and undergoes a change in its membrane potential to around +30mV caused
by the entry of positively charged sodium ions into the cell. The depolarization process causes
muscle contraction. The repolarization process occurs when a depolarized cell undergoes a
change in its membrane potential to around -90 mV caused by the exit of potassium ions to the
outside of the cell. The repolarization process causes muscle relaxation and prepares the cell
for the onset of the next action potential.

The conduction system is formed by 4 main structures: sinoatrial node (SA node),
atrioventricular node (AV node), bundle of His and the branches of the bundle (right and left),
and Purkinje fibers. The sinoatrial node is located at the junction of the superior vena cava and
the right atrium. According to Williams (2005), the sinoatrial node is composed of a set of cells
specialized in generating electrical impulses automatically and rhythmically, and acts as the
system's main pacemaker, controlling the frequency of the heartbeat. The electrical impulses
generated by the sinoatrial node travel through the atrium until they reach the atrioventricular
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node. The atrioventricular node is located at the base of the right atrium. According to Williams
(2005), the atrioventricular node retransmits the electrical current received to the bundle of His
with a small delay that is necessary to ensure that ventricular systole occurs after atrial systole
so that the transport of blood to the ventricles is carried out at the correct time. According to
Chakrabarti and Stuart (2005), the atrioventricular node can also act as a secondary pacemaker
of the system in situations in which the sinoatrial node presents some dysfunction that prevents
it from performing its function as expected. The bundle of His and the branches of the bundle
are located in the ventricular walls. This structure is formed by cells that conduct rapid
electrical impulses and have the function of transmitting action potentials from the atria to the
ventricles. Purkinje fibers are the endings of the branches of the bundle of His and spread
throughout the entire length of the ventricles to enable synchronized contraction of the
ventricular myocardium.

Any abnormality in the functioning of any of the structures of the conduction system can cause
arrhythmias and compromise the functioning of the system as a whole. According to
Chakrabarti and Stuart (2005), cardiac arrhythmias can arise as a result of abnormalities in the
generation or conduction of electrical impulses and can be classified according to the abnormal
speed of the heart rate (bradycardia or tachycardia) and according to the location of origin of
the disorder (atrium, atrioventricular junction or ventricle).

The usual heart rate of a person at rest ranges from 60 to 100 beats per minute (bpm).
Bradycardia occurs when the heart rate is less than 60 bpm. According to Chakrabarti and
Stuart (2005), bradycardia can occur when the sinoatrial node cannot generate an action
potential fast enough to meet the demands of the conduction system, or when there is some
blockage in the atrioventricular node or in the structure of the His-Purkinje system that
compromises the propagation of the action potential. According to Williams (2005),
bradycardias can also be caused by excessive activation of the vagal nerve, which causes the
expansion of blood vessels and a reduction in the return of blood to the heart.

Tachycardia occurs when the resting heart rate is greater than 100 bpm. According to
Chakrabarti and Stuart (2005), tachycardia can be caused by 3 mechanisms: reentry, enhanced
automaticity, or triggered activity. Reentry is a disorder in which an electrical impulse
propagates through a closed circuit and follows a retrograde path, causing the re-excitation of
cells that are already in another phase of the cardiac cycle. Enhanced automaticity is a disorder
in which electrical impulses are generated in an accelerated manner by the pacemaker as a
result of physiological or pathological causes. According to Chakrabarti and Stuart (2005), the
activated activity combines characteristics of both reentry and enhanced automaticity and can
cause the generation of extrasystoles by allowing depolarization events to occur during or
immediately after repolarization events.

The classification of arrhythmias considering both the speed of the heart rhythms and their
place of origin can generate several possible combinations and, according to Liu et al. (2022),
there may be imprecise or redundant terms in the classifications found in the literature or
clinical practice. The American Heart Association (AHA) has organized a statement that
presents a list of terms for diagnosing arrhythmias. The statement was published by Mason et
al. (2007) and has the main objective of providing a concise list of standardized terms to
improve diagnosis accuracy. The recommendation proposed by the AHA contains 117 main
classifications and is widely accepted worldwide.

The electrocardiogram (ECG) is a widely used tool for diagnosing cardiac arrhythmias. It is a
device that uses electrodes attached to the surface of the skin to detect and record the electrical
activity generated by the heart. ECG voltage is measured in microvolts (uV) and represents the
systole and diastole movements of the myocardium. According to iMotions (2024), the fact
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that it is a non-invasive, low-cost, and high-resolution tool favors the use of ECG in
physiological examinations. According to Rafie et al. (2021), the ECG enables the diagnosis
of various cardiovascular diseases and the cost-benefit ratio of its use is evident when compared
to other advanced modalities of imaging exams or invasive procedures.

The 12-lead system is the electrode placement configuration considered the universal standard.
This system uses 10 electrodes, 6 of which are attached to the chest and 4 are attached to the
limbs. Figures 2 and 3 show a representation of the positioning of the electrodes and the
configuration of the system. The system is called 12-Lead because the positioning of the 10
electrodes allows 12 leads to be generated that correspond to 12 points of view of the
myocardial rhythm. Leads are divided into 2 groups: precordial leads and limb leads. Precordial
leads (or chest leads) are obtained through electrodes attached to the chest and are designated
by the acronyms V1, V2, V3, V4, V5, and V6. Limb leads are obtained through the combination
of 2 or 3 electrodes attached to the limbs and are designated by the acronyms I, II, III, aVR,
aVL, and aVF.

Figure 2. Precordial leads
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Figure 3. Limb leads

The ECG records the phases of the cardiac cycle and presents the result as a trace in which the
vertical axis shows the recorded voltage and the horizontal axis shows the temporal sequence
of occurrence of action potentials. Figure 4 shows an example of an ECG in which the trace of
the 12 recorded leads can be viewed. According to Becker (2006), the ECG can record events
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generated by muscle cells (atrium and ventricle), but cannot record events generated by
specialized cells (sinoatrial node, for example) because these cells generate very low voltages.
Although the activity of specialized cells is not recorded, it is possible to deduce these events
through the interpretation of trace information. The phases are represented by the ECG through
waves, as shown in the diagram in Figure 5. The phases recorded are P wave (depolarization
of the atrial muscle), QRS complex (depolarization of the ventricular muscle), and T wave
(repolarization of the ventricular muscle and return to baseline). According to Becker (2006),
the ECG of healthy hearts shows a sequence of waves that follows a certain order and
regularity, and the ECG of arrhythmic hearts may present an absence of waves, inconsistent
intervals between waves, extra waves, or waves with altered morphology.
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Figure 4. Example of an ECG exam
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Figure 5. The ECG waves

According to Rafie et al. (2021), the use of Machine Learning techniques for analyzing ECG
exams has proven to be a promising alternative for improving clinical processes by enabling
the reduction of time and costs required to carry out the analyses and providing healthcare
professionals with an auxiliary tool to increase the accuracy of diagnoses. Several studies have
shown that health professionals can benefit from tools that help improve the accuracy of
diagnoses to provide greater confidence in making decisions about the treatments to be
adopted.

19



European Journal of Engineering Science and Technology, 7(2): 14-30, 2024

According to Liu et al. (2022) and Zheng et al. (2020), the development and dissemination of
wearable devices in recent years is another factor responsible for the growth of interest in the
application of Machine Learning techniques for automatic ECG interpretation. Mobile devices
such as smartwatches or smart vests can be used as cardiac monitoring tools to enable
healthcare services to be extended beyond clinics and laboratories.

Several studies have proposed Machine Learning and Deep Learning models for classifying
cardiac arrhythmias. Studies cited by Singh et al. (2023) and Nagarajan et al. (2021) presented
models that proved to be efficient tools for diagnosing arrhythmias by achieving high accuracy
rates in their predictions. According to Harmon et al. (2023), despite the advances achieved in
this field of research, there is still a need for improvements in technologies and processes to
attenuate limitations that may hinder the adoption of technologies based on Artificial
Intelligence in medical practice. An issue that has been mentioned as an important factor in
facilitating the adoption of Machine Learning and Deep Learning models in medical practice
is the improvement of the interpretability of model predictions, that is, the ability to explain to
healthcare professionals what rules or information were considered most important by the
model to reach the conclusions presented.

3. Methods

3.1. Dataset Description

The dataset used in this study was derived from the work developed by Liu et al. (2022). The
dataset contains 25,770 ECG records obtained from 24,666 individuals who were examined at
Shandong Provincial Hospital (Jinan, China) between 2019 and 2020. According to Liu et al.
(2022), the main motivators for creating the dataset were the lack of public large-scale ECG
datasets and the lack of standardization in the diagnoses used in existing datasets. The authors
made the dataset publicly available for use in research that addresses the development and
evaluation of arrhythmia classification methods.

The recordings were made using equipment configured according to the 12-lead system with a
sampling frequency of 500 Hz, and the duration of each recording ranged from 10 to 60
seconds. The exams were diagnosed by a cardiologist following the standard recommended by
the AHA. It was considered 44 classifications among the 117 suggested by the AHA, with
certain tests receiving more than one diagnosis. Table 1 presents the 44 classifications
considered in the diagnoses.

Table 1.
Classification of arrhythmias according to AHA
Code Description Code Description
1 Normal ECG 102 Left posterior fascicular block
21 Sinus tachycardia 104  Left bundle-branch block
22 Sinus bradycardia 105 Incomplete right bundle-branch block
23 Sinus arrhythmia 106 Right bundle-branch block
30 Atrial premature complex(es) 108  Ventricular preexcitation
31 Atrial premature complexes, nonconduct 120  Right-axis deviation
36 Junctional premature complex(es) 121 Left-axis deviation
37 Junctional escape complex(es) 125 Low voltage
50 Atrial fibrillation 140 Left atrial enlargement
51 Atrial flutter 142 Left ventricular
54 Junctional tachycardia 143 Right ventricular hypertrophy
60 Ventricular premature complex(es) 145 ST deviation
80 Short PR interval 146 ST deviation with T-wave change
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Code Description Code Description

81 AV conduction ratio N:D 147 T-wave abnormality

82 Prolonged PR interval 148 Prolonged QT interval

83 Second-degree AV block, Mobitz type | 152 TU fusion

84 Second-degree AV block, Mobitz type 1l 153 ST-T change due to ventricular
hypertrophy

85 2:1 AV block 155 Early repolarization

86 AV block, varying conduction 160  Anterior Ml

87 AV block, advanced (high-grade) 161 Inferior Ml

88 AV block, complete (third-degree) 165  Anteroseptal Ml

101 Left anterior fascicular block 166 Extensive anterior Ml

In this study, for standardization reasons, it was decided to use only the first 10 seconds of each
ECG recording. Thus, the dataset considered for the study has 128,850,000 samples with 12
features, in which each feature represents the voltage in microvolts obtained in each of the 12
recorded leads. Each ECG exam consists of 5,000 samples since a sampling frequency of 500
Hz was used. It was decided to consider only the first diagnosis of each ECG in cases in which
more than one diagnosis was assigned. As a result, 40 classifications were used since 4
classifications that were considered only as secondary diagnoses were eliminated from the
dataset.

3.2. Preprocessing

It was decided to use information from a single lead in this study, that is, only one of the 12
features in the dataset was used. The justification for this choice is the fact that, as it is a large-
scale dataset, the use of all leads could consume a large amount of computational resources and
make model training unfeasible. Lead II was selected in this case because, according to Meek
and Morris (2002), this lead is the most used for detecting arrhythmias because it is located
close to the cardiac axis and provides the best view of the P waves. When compared to the other
leads, the positioning of lead II is better aligned with the direction of propagation of electrical
impulses from the sinoatrial node towards the Purkinje fibers. Another reason for choosing to
use data from a single lead is that using all leads could result in a more complex model due to
having to deal with a greater number of features, which could result in worse performance.

It was verified through exploratory data analysis that there was no problem with missing or
inconsistent data in the dataset, eliminating the need to carry out specific treatments for these
types of problems. However, the presence of outliers and a moderate negative asymmetry in
the data distribution were observed, which required the use of robust normalization techniques
to adjust the data so that model training was less affected by outliers.

The 500 Hz sampling frequency used by the ECG made it possible to obtain high-resolution
recordings. High sampling rates like this make it possible to analyze events at specific moments
in time but can bring the trade-off of requiring a greater amount of computational resources to
process large amounts of data. For this reason, it was decided to resample the records to a
sampling frequency of 125 Hz. Thus, each ECG record had 1,250 samples from now on. This
decision was based on the results obtained from the work presented by Habib et al. (2020), in
which the authors compared the training of Convolutional Neural Network (CNN) models
using ECG recording datasets with different sampling frequencies and concluded that CNNss
demonstrate good generalization capacity even in datasets with lower sampling rates such as
100 Hz and 250 Hz for example.

The dataset was restructured to present the data in the form of a "time window". The 1,250
samples corresponding to each ECG exam were converted into a single sample made up of
1,250 features, in which each feature represents the recording of lead II voltage at a given
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instant of time. This data structuring is aligned with Cardiology concepts as doctors analyze
changes in recording patterns over time intervals. The number of samples in the dataset became
25,770 (number of ECG exams registered).

Table 2 shows the number of samples belonging to each arrhythmia classification. The dataset
was considerably unbalanced, as AHA code 1 (without arrhythmia) had 53% of the samples
while certain AHA codes had less than 1% of the samples. Upsampling and downsampling
techniques were used to balance the distribution of classes so as not to harm the model's
performance during training. The technique used for upsampling was the Synthetic Minority
Over-sampling Technique (SMOTE). The SMOTE technique requires that each class has at
least 6 instances as it uses a K-Nearest Neighbors algorithm considering 5 neighbors to
generate each synthetic instance. For this reason, the 8 categories that had less than 6 instances
(AHA codes 31, 37, 84, 87,102, 143, 148, and 152) were removed from the dataset. The dataset
now contains 200,000 instances belonging to 32 classes after applying the balancing techniques
and was considered suitable for training.

Table 2.
Distribution of categories in the dataset

AHA Code  Quantity % AHA Code Quantity %

1 13905 53.96 165 64 0.25
22 2659 10.32 104 62 0.24
147 1334 5.18 36 44 0.17
23 1123 4.36 160 35 0.14
145 1045 4.06 155 28 0.11
105 917 3.56 108 22 0.09
60 786 3.05 88 20 0.08
21 723 2.81 54 12 0.05
50 663 2.57 80 9 0.03
146 540 2.10 83 8 0.03
106 473 1.84 140 7 0.03
30 384 1.49 166 7 0.03
125 201 0.78 102 5 0.02
120 122 0.47 31 4 0.02
121 111 0.43 148 4 0.02
82 98 0.38 87 3 0.01
142 96 0.37 152 3 0.01
51 94 0.36 37 2 0.01
101 77 0.30 84 2 0.01
161 77 0.30 143 1 0.00

Table 3 shows the class identifier assigned to each AHA code for “internal” use in training and
evaluating the Deep Learning model. The use of numerical and sequential values to identify
classes is a requirement of the library used to train the model.

Table 3.

Class identification for each AHA code
Class ID AHA Code Class ID AHA Code
0 1 16 105
1 21 17 106
2 22 18 108
3 23 19 120
4 30 20 121
5 36 21 125
6 50 22 140
7 51 23 142
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Class ID AHA Code Class ID AHA Code
8 54 24 145
9 60 25 146
10 80 26 147
11 82 27 155
12 83 28 160
13 88 29 161
14 101 30 165
15 104 31 166

3.3. Model Training

A Convolutional Neural Network (CNN) model was developed for the task of predicting
cardiac arrhythmias. The choice to use a CNN model is because, according to Wibawa et al.
(2022), CNN models have been explored in recent years for time series analysis tasks and have
shown promising results, including surpassing the performance of other types of Deep Learning
models by achieving better accuracy in predictions with less consumption of computational
resources. Figure 6 shows the architecture of the proposed CNN model. The architecture is
composed of 4 convolutional layers, 2 Max Pooling layers, 1 Flatten layer, 1 Fully Connected
layer, and 1 output layer. Additionally, there are Batch Normalization layers after the
convolutional and Fully Connected layers. The proposed architecture provides a balance
between complexity and performance as it uses more convolutional layers to extract features
while also using Max Pooling layers to reduce dimensionality and computational cost. This
architecture provided better training results when compared to other traditional architectures
with 3 convolutional layers that were also tested. Table 4 shows the hyperparameters setup.
The definition of hyperparameters was based on some recommendations suggested in the
literature and on previous works by the author himself.

The model was implemented using the TensorFlow framework with the Keras library. The
training was carried out with a limit of 300 epochs using the Adam optimizer, a learning rate
0f 0.001, and a batch size of 32. The dataset samples were split in a stratified manner into 80%
of samples for training and 20% of samples for testing.
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Figure 6. CNN Model architecture
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Table 4.

Hyperparameters setup
Layer Layer type Filters Kernel size  Activation Kernel initializer  Units
1 ConvlD 8 3 RelLU he_uniform -
2 BachNormalization - - - - -
3 ConvlD 8 3 RelLU he_uniform -
4 BachNormalization - - - - -
5 MaxPooling1D - - - - -
6 ConvlD 16 5 ReLU he_uniform -
7 BachNormalization - - - - -
8 ConvlD 16 5 ReLU he_uniform -
9 BachNormalization - - - - -
10 MaxPoolinglD - - - - -
11 Flatten - - - - -
12 Dense - - RelLU he_uniform 512
13 BachNormalization - - - - -
14 Dense - - Softmax - 32

4. Results and Discussion

The CNN model achieved an accuracy rate of 98.37% on the test set. This performance is
considered satisfactory, as it indicates that the model is capable of achieving a high level of
accuracy in its predictions. Table 5 shows the detailed training metrics (precision, recall, and
F1-Score) for each of the classes. Rates greater than 78% were obtained for these metrics in
predicting class 0 (without arrhythmia) and rates greater than 93% for these metrics in
predicting all other classes. These results show that the training execution was consistent and
the model was able to identify all 32 classes in the dataset with a high level of accuracy.

Table 5.

Detailed metrics
Class Precision Recall F1-Score Class Precision Recall F1-Score
0 0.84 0.78 0.81 16 0.97 0.95 0.96
1 0.99 1.00 0.99 17 0.99 1.00 0.99
2 0.95 0.98 0.97 18 1.00 1.00 1.00
3 0.96 0.94 0.95 19 1.00 1.00 1.00
4 0.99 0.99 0.99 20 1.00 1.00 1.00
5 1.00 1.00 1.00 21 0.99 1.00 1.00
6 0.98 0.98 0.98 22 1.00 1.00 1.00
7 1.00 1.00 1.00 23 1.00 1.00 1.00
8 1.00 1.00 1.00 24 0.94 0.96 0.95
9 0.99 0.98 0.98 25 0.95 1.00 0.97
10 1.00 1.00 1.00 26 0.95 0.93 0.94
11 1.00 1.00 1.00 27 1.00 1.00 1.00
12 1.00 1.00 1.00 28 1.00 1.00 1.00
13 1.00 1.00 1.00 29 1.00 1.00 1.00
14 1.00 1.00 1.00 30 1.00 1.00 1.00
15 1.00 1.00 1.00 31 1.00 1.00 1.00

The fact that the rates obtained for class 0 are slightly lower than those obtained for the other
classes is a detail that deserves attention, as it is an indication that the model had a little
difficulty identifying samples of this class. Figure 7 shows the confusion matrix of the model
predictions. An analysis of the confusion matrix makes it possible to verify the results of the
predictions for samples of class 0. The model obtained a recall rate of 78% for this class. This
recall indicates that for every 100 samples that belong to class 0, the model confused 22
samples with other classes. It can be seen that most of the samples misclassified in this case
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were confused with classes 2, 3, 16, 24, and 26. The model obtained a precision rate of 84%
for class 0. This precision indicates that for every 100 samples that were classified by the model
as belonging to this class, 16 samples belonged to other classes. It can be seen that most of the
samples misclassified in this case were confused with classes 3, 16, 24, and 26.

Classes 2, 3, 16, 24, and 26 correspond respectively to the following AHA codes: 22 (sinus
bradycardia), 23 (sinus arrhythmia), 105 (incomplete right bundle-branch block), 145 (ST
deviation), and 147 (T-wave abnormality). A possible reason for the confusion of class 0 with
these classes is that these types of arrhythmia are considered difficult to diagnose in the medical
literature because they may present similar characteristics in ECG data patterns. Sinus
bradycardia, for example, normally presents ECG waves with the same morphology as those
presented in a normal ECG despite presenting a smaller number of waves per minute.
Therefore, the confusion of a sample belonging to class 0 with a sample belonging to class 3
may be an indication that the model is considering wave morphology as the main pattern to
differentiate the classes and, therefore, has some difficulty in classifying a sinus bradycardia
sample as a type of arrhythmia.
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Figure 7. Confusion Matrix

The Local Interpretable Model-agnostic Explanations (LIME) method was used to identify
which features contributed most (or were most important) to the prediction of each class. LIME
was applied to one sample of each class to identify among the 1,250 available features which
were the 50 features that most contributed to the classification of that sample. Figures 8 to 12
show as an example the result of applying LIME to samples of classes 0, 2, 3, 7, and 28. The
red dots in the graphs represent the 50 features identified by LIME as the biggest contributors
to the identification of each class.
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The results presented by LIME can be useful in helping healthcare professionals interpret how
the CNN model reached its conclusions, and evaluate whether the results presented are reliable
and whether the model's decisions adhere to requirements related to responsibility, ethics,
compliance, and regulation. Taking Figure 10 as an example, the features that most contributed
to the classification of a sinus arrhythmia sample (AHA code 23) are mostly located in the P
wave region and, according to cardiology concepts, sinus arrhythmia is characterized by
variations in the P-P interval. Taking Figure 12 as an example, the features that most
contributed to the classification of a sample of anterior myocardial infarction (AHA code 160)
are mostly located in the ST segment region and, according to cardiology concepts, myocardial
infarction is characterized by unevenness in the ST segment.

Efforts to improve the interpretability of model decisions tend to contribute to increasing the
acceptance of Al techniques by healthcare professionals as the "black box" nature of Al models
has represented a challenge for the adoption of these techniques in the medical field. Al tools
must offer the user an explanation of why a given patient has a given disease and the use of
interpretability techniques such as LIME can help increase the comprehensibility of the model's
decisions and contribute positively to the healthcare professionals' decision-making process.

Feature Importance Analysis for class 0 prediction
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Figure 8. Feature importance for class 0 (Normal ECG)

Feature Importance Analysis for class 2 prediction
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Figure 9. Feature importance for class 2 (Sinus bradycardia)
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Feature Importance Analysis for class 3 prediction
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Figure 10. Feature importance for class 3 (Sinus arrhythmia)

Feature Importance Analysis for class 7 prediction
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Figure 11. Feature importance for class 7 (Atrial flutter)

Feature Importance Analysis for class 28 prediction
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Figure 12. Feature importance for class 28 (Anterior MI)

Figures 13 and 14 show the history of accuracy and loss during training. It can be seen that the
CNN model achieved high accuracy rates in the first iterations and converged with less than
40 training epochs. It was observed that the use of Batch Normalization layers resulted in a
more stable evolution of validation loss values and better test set accuracy when compared to
training the same architecture without Batch Normalization layers.
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Figure 14. Loss history

The CNN model uses 2,535,176 trainable parameters. A model with this number of parameters
1s normally considered to be of moderate complexity. This characteristic meets the objective of
presenting a Deep Learning model that achieves a satisfactory accuracy rate in its predictions
with the use of fewer computational resources for training. The decision to perform a
resampling of the records to a frequency of 125 Hz proved to be correct as it made it possible
to reduce the computational cost of training without compromising the model's performance.

It was possible to obtain excellent performance using only data from lead II in the training and
this result is interesting because wearable devices such as smartwatches, for example, make
use of a single lead and the results obtained in this study demonstrate the feasibility of
performing accurate cardiac monitoring using such devices. However, the decision to disregard
the other leads in the study meant losing the possibility of carrying out comparative analyses
to validate the assumption that lead II provides better results than other leads or perform
analyses that can provide insights into the data of other leads.
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5. Conclusion

Deep Learning techniques have great potential for helping healthcare professionals identify
and treat diseases. The possibility of analyzing exams quickly and automatically allows large
amounts of information to be analyzed in less time, which can speed up processes in the
medical field. Furthermore, professionals can count on a tool that helps reduce diagnostic errors
and costs associated with the process.

The development of low-cost Deep Learning models generates an alternative to enable the
availability of cardiac monitoring technologies that can be used in wearable devices in
environments outside laboratories and clinics. This possibility can be useful in cardiology
practice because certain arrhythmias occur intermittently at different times of the day and it
can be difficult to diagnose the occurrence of the arrhythmia during examinations in
laboratories and clinics.

Aspects related to ethics, transparency, responsibility, and legality represent a challenge for the
adoption of Al-based technologies in medical practice because it is a highly regulated sector
and Al-based systems need to meet a series of requirements to ensure that their results are
considered valid and accepted. Concern about data quality, security, and bias is also an issue
that poses challenges for the adoption of Al-based systems because healthcare professionals
may become resistant to using the technology if they understand that there is not good data
governance in conducting the processes. The need for healthcare professionals to be trained to
use this type of technology also creates challenges for its adoption because it creates the need
for the training of new healthcare professionals to be adapted to develop skills in the use of
digital technologies in their daily practice. To overcome these challenges, investments are
needed in adequate training of healthcare professionals to deal with Al-based technologies, the
establishment of data governance frameworks that ensure data quality and security, the
evolution of regulatory mechanisms associated with the use of Al in healthcare, and
collaboration between healthcare and technology professionals to facilitate knowledge sharing.

The proposed CNN model achieved results that satisfactorily meet the performance
expectations intended for this study and proved to be an interesting option to deal with the
problem in question. As a recommendation for future work, a comparative study between the
leads is suggested to verify whether the performance of the model using the other leads could
outperform the result obtained with lead II. A comparative study of the differences between
leads could reveal useful insights into the data and contribute to research in the area.
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