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 Cardiac arrhythmias are a disease with considerable incidence and 

prevalence worldwide, and their diagnosis can be complex due to 

the existence of different types of arrhythmias that share similar 

characteristics and make an accurate diagnosis difficult. Making a 

correct diagnosis of the kind of arrhythmia that affects an 

individual is important to define the most appropriate type of 

treatment for the case. Machine Learning and Deep Learning 

techniques have been proposed to automate the diagnosis of 

arrhythmias to assist healthcare professionals in decision-making. 

This study proposes a Convolutional Neural Network model for 

classifying cardiac arrhythmias using electrocardiogram data. The 

objective is to present a model that achieves high accuracy rates 

in identifying types of arrhythmias and presents an adequate 

balance between performance and computational costs. The model 

was trained with a dataset composed of electrocardiogram exams 

with 32 types of arrhythmias. In the pre-processing phase, the 

dataset was restructured to allow the data to be treated as a time 

series to explore the potential of Convolutional Neural Networks 

in dealing with data organized in this way. Training was carried 

out using a state-of-the-art Deep Learning model and the model 

achieved an accuracy rate of 98.37% in its predictions. This 

excellent performance confirms the ability of Convolutional 

Neural Networks to efficiently deal with pattern learning in time 

series. The results obtained demonstrate the potential of Deep 

Learning techniques as aiding tools to provide improvements in 

medical processes.  

1. Introduction 

Cardiac arrhythmias are a disease that generates considerable concern and requires careful 

diagnosis because they are associated with several risk factors. Some of the associated risk 

factors are high blood pressure, high cholesterol, diabetes, obesity, hyperthyroidism, 

hypothyroidism, electrolyte disorders, structural heart disease, smoking, alcoholism, anemia, 

atherosclerosis, emotional stress, and genetic predisposition. Arrhythmias are classified 

according to their level of criticality as benign or malignant. Arrhythmias are considered benign 

when they generate unpleasant symptoms but do not pose a risk of death, and they are 
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considered malignant when they compromise cardiac function and can even cause sudden death 

due to a fulminant heart attack. 

Arrhythmias are a disease with considerable incidence and prevalence worldwide. According 

to Li et al. (2022), a study that analyzed and calculated epidemiological data related to cardiac 

arrhythmias in 204 countries reported an incidence of around 4.72 million cases and a 

prevalence of around 59.7 million cases in 2019. The results showed in the study reinforce the 

importance of investments in the development of strategies and technologies that can assist 

doctors and healthcare professionals in preventing and treating this disease. 

There are different types of arrhythmias and there is usually a treatment modality best suited 

for each type. According to Kingma et al. (2023), there are treatments based on antiarrhythmic 

medications (beta blockers and calcium channel blockers, for example), implantable electrical 

devices (pacemakers and defibrillators, for example), medical procedures (cardioversion and 

ablation, for example) and surgeries. According to Cruickshank (2008), an accurate diagnosis 

of the type of arrhythmia that affects the individual is essential to assess the severity of the 

disorder and the associated risks and define the type of treatment most suitable for the case. 

This study aims to propose a Deep Learning model for classifying cardiac arrhythmias through 

the analysis of data from electrocardiograms. The model must be able to classify 

electrocardiogram exams accurately considering different types of arrhythmias. The results 

obtained in the study are expected to demonstrate the potential of using Deep Learning 

techniques to assist healthcare professionals in diagnosing cardiac arrhythmias. A model that 

can accurately classify different types of arrhythmias provides healthcare professionals with a 

very useful tool to improve the accuracy of their diagnoses, mitigate the occurrence of errors, 

and provide cost reduction by eliminating the need for additional tests to be carried out to define 

the specific treatment to be given to each patient. This study also seeks to contribute to 

improving the clinical processes involved and the exchange of information between different 

professionals by encouraging the use of standardized ways of using Artificial Intelligence 

techniques to make diagnoses and conduct treatments in clinical practice. 

2. Literature Review 

The cardiac cycle is the set of events that occur in the valves and chambers of the heart between 

the beginning of a heartbeat and the beginning of the next beat. These events are responsible 

for pumping blood to the lungs, where the blood oxygenation process occurs, and pumping 

oxygenated blood to the aorta artery, which has the function of ensuring that blood is 

transported to the different parts of the organism with the ultimate objective of nourishing cells 

and to provide the energy necessary for the proper functioning of all organs. The cardiac cycle 

is carried out through movements of contraction (systole) and relaxation (diastole) of the 

myocardium. These movements are performed regularly and synchronized to ensure the correct 

flow of blood throughout the cardiovascular system. 

Cardiac arrhythmias are changes in the rhythm of the heartbeat caused by disorders or diseases 

that affect the functioning of the heart. The events of the cardiac cycle occur irregularly or 

inappropriately when the body suffers an arrhythmia. These changes create an imbalance in the 

body that can range from impaired pumping of oxygenated blood to other organs in the body 

to sudden death in more extreme cases. According to Kingma et al. (2023), most arrhythmias 

occur as a result of structural abnormalities in the myocardium, but arrhythmias can also occur 

due to risk factors derived from genetic or environmental conditions. 

Figure 1 shows a representation of the basic anatomy and electrical conduction system of the 

heart. The heart is divided into 4 chambers: 2 atria (right and left) and 2 ventricles (right and 
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left). Due to their location, the atria are called upper chambers, and the ventricles are called 

lower chambers. Oxygen-poor blood reaches the right atrium through the vena cava and is 

drained into the right ventricle to be transported to the lungs through the pulmonary valve and 

pulmonary artery. Oxygenated blood reaches the left atrium through the pulmonary veins and 

is drained into the left ventricle to be transported throughout the body through the aortic valve 

and the aorta artery. The contraction and relaxation movements of the chambers, as well as the 

opening and closing events of the valves, are carried out in an orderly and synchronized 

manner, and this process ensures that the blood has the correct destination at the correct time. 

 
Figure 1. Basic anatomy and conduction system of the heart 

The conduction system has a set of specialized cells responsible for generating and conducting 

electrical impulses that coordinate the systole and diastole movements of the heart chambers. 

Electrical impulses propagate across the membrane of each cell due to action potentials that 

allow ions to flow through membrane channels. According to Williams (2005), the generation 

of action potentials occurs through a set of complex interactions that occur inside and outside 

cells involving sodium, potassium, and calcium ions. Action potentials are divided into 2 main 

processes: depolarization and repolarization. According to Chakrabarti and Stuart (2005), 

initially, the cell is in a state called polarization, also called resting phase, which comprises the 

period between two subsequent action potentials and in which the membrane potential 

(difference between the intracellular environment and the extracellular environment) has a 

negative charge of about -90 mV. The depolarization process occurs when a polarized cell 

receives a stimulus and undergoes a change in its membrane potential to around +30mV caused 

by the entry of positively charged sodium ions into the cell. The depolarization process causes 

muscle contraction. The repolarization process occurs when a depolarized cell undergoes a 

change in its membrane potential to around -90 mV caused by the exit of potassium ions to the 

outside of the cell. The repolarization process causes muscle relaxation and prepares the cell 

for the onset of the next action potential. 

The conduction system is formed by 4 main structures: sinoatrial node (SA node), 

atrioventricular node (AV node), bundle of His and the branches of the bundle (right and left), 

and Purkinje fibers. The sinoatrial node is located at the junction of the superior vena cava and 

the right atrium. According to Williams (2005), the sinoatrial node is composed of a set of cells 

specialized in generating electrical impulses automatically and rhythmically, and acts as the 

system's main pacemaker, controlling the frequency of the heartbeat. The electrical impulses 

generated by the sinoatrial node travel through the atrium until they reach the atrioventricular 
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node. The atrioventricular node is located at the base of the right atrium. According to Williams 

(2005), the atrioventricular node retransmits the electrical current received to the bundle of His 

with a small delay that is necessary to ensure that ventricular systole occurs after atrial systole 

so that the transport of blood to the ventricles is carried out at the correct time. According to 

Chakrabarti and Stuart (2005), the atrioventricular node can also act as a secondary pacemaker 

of the system in situations in which the sinoatrial node presents some dysfunction that prevents 

it from performing its function as expected. The bundle of His and the branches of the bundle 

are located in the ventricular walls. This structure is formed by cells that conduct rapid 

electrical impulses and have the function of transmitting action potentials from the atria to the 

ventricles. Purkinje fibers are the endings of the branches of the bundle of His and spread 

throughout the entire length of the ventricles to enable synchronized contraction of the 

ventricular myocardium. 

Any abnormality in the functioning of any of the structures of the conduction system can cause 

arrhythmias and compromise the functioning of the system as a whole. According to 

Chakrabarti and Stuart (2005), cardiac arrhythmias can arise as a result of abnormalities in the 

generation or conduction of electrical impulses and can be classified according to the abnormal 

speed of the heart rate (bradycardia or tachycardia) and according to the location of origin of 

the disorder (atrium, atrioventricular junction or ventricle). 

The usual heart rate of a person at rest ranges from 60 to 100 beats per minute (bpm). 

Bradycardia occurs when the heart rate is less than 60 bpm. According to Chakrabarti and 

Stuart (2005), bradycardia can occur when the sinoatrial node cannot generate an action 

potential fast enough to meet the demands of the conduction system, or when there is some 

blockage in the atrioventricular node or in the structure of the His-Purkinje system that 

compromises the propagation of the action potential. According to Williams (2005), 

bradycardias can also be caused by excessive activation of the vagal nerve, which causes the 

expansion of blood vessels and a reduction in the return of blood to the heart. 

Tachycardia occurs when the resting heart rate is greater than 100 bpm. According to 

Chakrabarti and Stuart (2005), tachycardia can be caused by 3 mechanisms: reentry, enhanced 

automaticity, or triggered activity. Reentry is a disorder in which an electrical impulse 

propagates through a closed circuit and follows a retrograde path, causing the re-excitation of 

cells that are already in another phase of the cardiac cycle. Enhanced automaticity is a disorder 

in which electrical impulses are generated in an accelerated manner by the pacemaker as a 

result of physiological or pathological causes. According to Chakrabarti and Stuart (2005), the 

activated activity combines characteristics of both reentry and enhanced automaticity and can 

cause the generation of extrasystoles by allowing depolarization events to occur during or 

immediately after repolarization events. 

The classification of arrhythmias considering both the speed of the heart rhythms and their 

place of origin can generate several possible combinations and, according to Liu et al. (2022), 

there may be imprecise or redundant terms in the classifications found in the literature or 

clinical practice. The American Heart Association (AHA) has organized a statement that 

presents a list of terms for diagnosing arrhythmias. The statement was published by Mason et 

al. (2007) and has the main objective of providing a concise list of standardized terms to 

improve diagnosis accuracy. The recommendation proposed by the AHA contains 117 main 

classifications and is widely accepted worldwide. 

The electrocardiogram (ECG) is a widely used tool for diagnosing cardiac arrhythmias. It is a 

device that uses electrodes attached to the surface of the skin to detect and record the electrical 

activity generated by the heart. ECG voltage is measured in microvolts (µV) and represents the 

systole and diastole movements of the myocardium. According to iMotions (2024), the fact 
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that it is a non-invasive, low-cost, and high-resolution tool favors the use of ECG in 

physiological examinations. According to Rafie et al. (2021), the ECG enables the diagnosis 

of various cardiovascular diseases and the cost-benefit ratio of its use is evident when compared 

to other advanced modalities of imaging exams or invasive procedures. 

The 12-lead system is the electrode placement configuration considered the universal standard. 

This system uses 10 electrodes, 6 of which are attached to the chest and 4 are attached to the 

limbs. Figures 2 and 3 show a representation of the positioning of the electrodes and the 

configuration of the system. The system is called 12-Lead because the positioning of the 10 

electrodes allows 12 leads to be generated that correspond to 12 points of view of the 

myocardial rhythm. Leads are divided into 2 groups: precordial leads and limb leads. Precordial 

leads (or chest leads) are obtained through electrodes attached to the chest and are designated 

by the acronyms V1, V2, V3, V4, V5, and V6. Limb leads are obtained through the combination 

of 2 or 3 electrodes attached to the limbs and are designated by the acronyms I, II, III, aVR, 

aVL, and aVF. 

 
Figure 2. Precordial leads 

 
Figure 3. Limb leads 

The ECG records the phases of the cardiac cycle and presents the result as a trace in which the 

vertical axis shows the recorded voltage and the horizontal axis shows the temporal sequence 

of occurrence of action potentials. Figure 4 shows an example of an ECG in which the trace of 

the 12 recorded leads can be viewed. According to Becker (2006), the ECG can record events 
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generated by muscle cells (atrium and ventricle), but cannot record events generated by 

specialized cells (sinoatrial node, for example) because these cells generate very low voltages. 

Although the activity of specialized cells is not recorded, it is possible to deduce these events 

through the interpretation of trace information. The phases are represented by the ECG through 

waves, as shown in the diagram in Figure 5. The phases recorded are P wave (depolarization 

of the atrial muscle), QRS complex (depolarization of the ventricular muscle), and T wave 

(repolarization of the ventricular muscle and return to baseline). According to Becker (2006), 

the ECG of healthy hearts shows a sequence of waves that follows a certain order and 

regularity, and the ECG of arrhythmic hearts may present an absence of waves, inconsistent 

intervals between waves, extra waves, or waves with altered morphology. 

 
Figure 4. Example of an ECG exam 

  
Figure 5. The ECG waves 

According to Rafie et al. (2021), the use of Machine Learning techniques for analyzing ECG 

exams has proven to be a promising alternative for improving clinical processes by enabling 

the reduction of time and costs required to carry out the analyses and providing healthcare 

professionals with an auxiliary tool to increase the accuracy of diagnoses. Several studies have 

shown that health professionals can benefit from tools that help improve the accuracy of 

diagnoses to provide greater confidence in making decisions about the treatments to be 

adopted. 
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According to Liu et al. (2022) and Zheng et al. (2020), the development and dissemination of 

wearable devices in recent years is another factor responsible for the growth of interest in the 

application of Machine Learning techniques for automatic ECG interpretation. Mobile devices 

such as smartwatches or smart vests can be used as cardiac monitoring tools to enable 

healthcare services to be extended beyond clinics and laboratories. 

Several studies have proposed Machine Learning and Deep Learning models for classifying 

cardiac arrhythmias. Studies cited by Singh et al. (2023) and Nagarajan et al. (2021) presented 

models that proved to be efficient tools for diagnosing arrhythmias by achieving high accuracy 

rates in their predictions. According to Harmon et al. (2023), despite the advances achieved in 

this field of research, there is still a need for improvements in technologies and processes to 

attenuate limitations that may hinder the adoption of technologies based on Artificial 

Intelligence in medical practice. An issue that has been mentioned as an important factor in 

facilitating the adoption of Machine Learning and Deep Learning models in medical practice 

is the improvement of the interpretability of model predictions, that is, the ability to explain to 

healthcare professionals what rules or information were considered most important by the 

model to reach the conclusions presented. 

3. Methods 

3.1. Dataset Description 

The dataset used in this study was derived from the work developed by Liu et al. (2022). The 

dataset contains 25,770 ECG records obtained from 24,666 individuals who were examined at 

Shandong Provincial Hospital (Jinan, China) between 2019 and 2020. According to Liu et al. 

(2022), the main motivators for creating the dataset were the lack of public large-scale ECG 

datasets and the lack of standardization in the diagnoses used in existing datasets. The authors 

made the dataset publicly available for use in research that addresses the development and 

evaluation of arrhythmia classification methods. 

The recordings were made using equipment configured according to the 12-lead system with a 

sampling frequency of 500 Hz, and the duration of each recording ranged from 10 to 60 

seconds. The exams were diagnosed by a cardiologist following the standard recommended by 

the AHA. It was considered 44 classifications among the 117 suggested by the AHA, with 

certain tests receiving more than one diagnosis. Table 1 presents the 44 classifications 

considered in the diagnoses. 

Table 1.  

Classification of arrhythmias according to AHA 

Code Description  Code Description 

1 Normal ECG  102 Left posterior fascicular block 

21 Sinus tachycardia  104 Left bundle-branch block 

22 Sinus bradycardia  105 Incomplete right bundle-branch block 

23 Sinus arrhythmia  106 Right bundle-branch block 

30 Atrial premature complex(es)  108 Ventricular preexcitation 

31 Atrial premature complexes, nonconduct  120 Right-axis deviation 

36 Junctional premature complex(es)  121 Left-axis deviation 

37 Junctional escape complex(es)  125 Low voltage 

50 Atrial fibrillation  140 Left atrial enlargement 

51 Atrial flutter  142 Left ventricular 

54 Junctional tachycardia  143 Right ventricular hypertrophy 
60 Ventricular premature complex(es)  145 ST deviation 

80 Short PR interval  146 ST deviation with T-wave change 
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Code Description  Code Description 

81 AV conduction ratio N:D  147 T-wave abnormality 

82 Prolonged PR interval  148 Prolonged QT interval 

83 Second-degree AV block, Mobitz type I   152 TU fusion 

84 Second-degree AV block, Mobitz type II  153 ST-T change due to ventricular 

hypertrophy 

85 2:1 AV block  155 Early repolarization 

86 AV block, varying conduction  160 Anterior MI 

87 AV block, advanced (high-grade)  161 Inferior MI 

88 AV block, complete (third-degree)  165 Anteroseptal MI 

101 Left anterior fascicular block  166 Extensive anterior MI 

In this study, for standardization reasons, it was decided to use only the first 10 seconds of each 

ECG recording. Thus, the dataset considered for the study has 128,850,000 samples with 12 

features, in which each feature represents the voltage in microvolts obtained in each of the 12 

recorded leads. Each ECG exam consists of 5,000 samples since a sampling frequency of 500 

Hz was used. It was decided to consider only the first diagnosis of each ECG in cases in which 

more than one diagnosis was assigned. As a result, 40 classifications were used since 4 

classifications that were considered only as secondary diagnoses were eliminated from the 

dataset. 

3.2. Preprocessing 

It was decided to use information from a single lead in this study, that is, only one of the 12 

features in the dataset was used. The justification for this choice is the fact that, as it is a large-

scale dataset, the use of all leads could consume a large amount of computational resources and 

make model training unfeasible. Lead II was selected in this case because, according to Meek 

and Morris (2002), this lead is the most used for detecting arrhythmias because it is located 

close to the cardiac axis and provides the best view of the P waves. When compared to the other 

leads, the positioning of lead II is better aligned with the direction of propagation of electrical 

impulses from the sinoatrial node towards the Purkinje fibers. Another reason for choosing to 

use data from a single lead is that using all leads could result in a more complex model due to 

having to deal with a greater number of features, which could result in worse performance. 

It was verified through exploratory data analysis that there was no problem with missing or 

inconsistent data in the dataset, eliminating the need to carry out specific treatments for these 

types of problems. However, the presence of outliers and a moderate negative asymmetry in 

the data distribution were observed, which required the use of robust normalization techniques 

to adjust the data so that model training was less affected by outliers. 

The 500 Hz sampling frequency used by the ECG made it possible to obtain high-resolution 

recordings. High sampling rates like this make it possible to analyze events at specific moments 

in time but can bring the trade-off of requiring a greater amount of computational resources to 

process large amounts of data. For this reason, it was decided to resample the records to a 

sampling frequency of 125 Hz. Thus, each ECG record had 1,250 samples from now on. This 

decision was based on the results obtained from the work presented by Habib et al. (2020), in 

which the authors compared the training of Convolutional Neural Network (CNN) models 

using ECG recording datasets with different sampling frequencies and concluded that CNNs 

demonstrate good generalization capacity even in datasets with lower sampling rates such as 

100 Hz and 250 Hz for example. 

The dataset was restructured to present the data in the form of a "time window". The 1,250 

samples corresponding to each ECG exam were converted into a single sample made up of 

1,250 features, in which each feature represents the recording of lead II voltage at a given 
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instant of time. This data structuring is aligned with Cardiology concepts as doctors analyze 

changes in recording patterns over time intervals. The number of samples in the dataset became 

25,770 (number of ECG exams registered). 

Table 2 shows the number of samples belonging to each arrhythmia classification. The dataset 

was considerably unbalanced, as AHA code 1 (without arrhythmia) had 53% of the samples 

while certain AHA codes had less than 1% of the samples. Upsampling and downsampling 

techniques were used to balance the distribution of classes so as not to harm the model's 

performance during training. The technique used for upsampling was the Synthetic Minority 

Over-sampling Technique (SMOTE). The SMOTE technique requires that each class has at 

least 6 instances as it uses a K-Nearest Neighbors algorithm considering 5 neighbors to 

generate each synthetic instance. For this reason, the 8 categories that had less than 6 instances 

(AHA codes 31, 37, 84, 87, 102, 143, 148, and 152) were removed from the dataset. The dataset 

now contains 200,000 instances belonging to 32 classes after applying the balancing techniques 

and was considered suitable for training. 

Table 2.  

Distribution of categories in the dataset 

AHA Code Quantity %   AHA Code Quantity  % 

1 13905 53.96   165 64 0.25 

22 2659 10.32   104 62 0.24 

147 1334 5.18   36 44 0.17 

23 1123 4.36   160 35 0.14 

145 1045 4.06   155 28 0.11 

105 917 3.56   108 22 0.09 

60 786 3.05   88 20 0.08 

21 723 2.81   54 12 0.05 

50 663 2.57   80 9 0.03 

146 540 2.10   83 8 0.03 

106 473 1.84   140 7 0.03 

30 384 1.49   166 7 0.03 

125 201 0.78   102 5 0.02 

120 122 0.47   31 4 0.02 

121 111 0.43   148 4 0.02 

82 98 0.38   87 3 0.01 

142 96 0.37   152 3 0.01 

51 94 0.36   37 2 0.01 

101 77 0.30   84 2 0.01 

161 77 0.30   143 1 0.00 

Table 3 shows the class identifier assigned to each AHA code for “internal” use in training and 

evaluating the Deep Learning model. The use of numerical and sequential values to identify 

classes is a requirement of the library used to train the model. 

Table 3.  

Class identification for each AHA code 

Class ID AHA Code   Class ID AHA Code 

0 1   16 105 

1 21   17 106 

2 22   18 108 

3 23   19 120 

4 30   20 121 

5 36    21 125 
6 50   22 140 

7 51   23 142 
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Class ID AHA Code   Class ID AHA Code 

8 54   24 145 

9 60   25 146 

10 80   26 147 

11 82   27 155 

12 83   28 160 

13 88   29 161 

14 101   30 165 

15 104   31 166 

3.3. Model Training 

A Convolutional Neural Network (CNN) model was developed for the task of predicting 

cardiac arrhythmias. The choice to use a CNN model is because, according to Wibawa et al. 

(2022), CNN models have been explored in recent years for time series analysis tasks and have 

shown promising results, including surpassing the performance of other types of Deep Learning 

models by achieving better accuracy in predictions with less consumption of computational 

resources. Figure 6 shows the architecture of the proposed CNN model. The architecture is 

composed of 4 convolutional layers, 2 Max Pooling layers, 1 Flatten layer, 1 Fully Connected 

layer, and 1 output layer. Additionally, there are Batch Normalization layers after the 

convolutional and Fully Connected layers. The proposed architecture provides a balance 

between complexity and performance as it uses more convolutional layers to extract features 

while also using Max Pooling layers to reduce dimensionality and computational cost. This 

architecture provided better training results when compared to other traditional architectures 

with 3 convolutional layers that were also tested. Table 4 shows the hyperparameters setup. 

The definition of hyperparameters was based on some recommendations suggested in the 

literature and on previous works by the author himself. 

The model was implemented using the TensorFlow framework with the Keras library. The 

training was carried out with a limit of 300 epochs using the Adam optimizer, a learning rate 

of 0.001, and a batch size of 32. The dataset samples were split in a stratified manner into 80% 

of samples for training and 20% of samples for testing. 

 
Figure 6. CNN Model architecture 
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Table 4.  

Hyperparameters setup 

Layer Layer type Filters Kernel size Activation Kernel initializer Units 

1 Conv1D 8 3 ReLU he_uniform - 

2 BachNormalization - - - - - 

3 Conv1D 8 3 ReLU he_uniform - 

4 BachNormalization - - - - - 

5 MaxPooling1D - - - - - 

6 Conv1D 16 5 ReLU he_uniform - 

7 BachNormalization - - - - - 

8 Conv1D 16 5 ReLU he_uniform - 

9 BachNormalization - - - - - 

10 MaxPooling1D - - - - - 

11 Flatten - - - - - 

12 Dense - - ReLU he_uniform 512 

13 BachNormalization - - - - - 

14 Dense - - Softmax - 32 

4. Results and Discussion 

The CNN model achieved an accuracy rate of 98.37% on the test set. This performance is 

considered satisfactory, as it indicates that the model is capable of achieving a high level of 

accuracy in its predictions. Table 5 shows the detailed training metrics (precision, recall, and 

F1-Score) for each of the classes. Rates greater than 78% were obtained for these metrics in 

predicting class 0 (without arrhythmia) and rates greater than 93% for these metrics in 

predicting all other classes. These results show that the training execution was consistent and 

the model was able to identify all 32 classes in the dataset with a high level of accuracy. 

Table 5.  

Detailed metrics 

Class Precision Recall F1-Score  Class Precision Recall F1-Score 

0 0.84 0.78 0.81  16 0.97 0.95 0.96 

1 0.99 1.00 0.99  17 0.99 1.00 0.99 

2 0.95 0.98 0.97  18 1.00 1.00 1.00 

3 0.96 0.94 0.95  19 1.00 1.00 1.00 

4 0.99 0.99 0.99  20 1.00 1.00 1.00 

5 1.00 1.00 1.00  21 0.99 1.00 1.00 

6 0.98 0.98 0.98  22 1.00 1.00 1.00 

7 1.00 1.00 1.00  23 1.00 1.00 1.00 

8 1.00 1.00 1.00  24 0.94 0.96 0.95 

9 0.99 0.98 0.98  25 0.95 1.00 0.97 

10 1.00 1.00 1.00  26 0.95 0.93 0.94 

11 1.00 1.00 1.00  27 1.00 1.00 1.00 

12 1.00 1.00 1.00  28 1.00 1.00 1.00 

13 1.00 1.00 1.00  29 1.00 1.00 1.00 

14 1.00 1.00 1.00  30 1.00 1.00 1.00 

15 1.00 1.00 1.00  31 1.00 1.00 1.00 

The fact that the rates obtained for class 0 are slightly lower than those obtained for the other 

classes is a detail that deserves attention, as it is an indication that the model had a little 

difficulty identifying samples of this class. Figure 7 shows the confusion matrix of the model 

predictions. An analysis of the confusion matrix makes it possible to verify the results of the 

predictions for samples of class 0. The model obtained a recall rate of 78% for this class. This 

recall indicates that for every 100 samples that belong to class 0, the model confused 22 

samples with other classes. It can be seen that most of the samples misclassified in this case 
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were confused with classes 2, 3, 16, 24, and 26. The model obtained a precision rate of 84% 

for class 0. This precision indicates that for every 100 samples that were classified by the model 

as belonging to this class, 16 samples belonged to other classes. It can be seen that most of the 

samples misclassified in this case were confused with classes 3, 16, 24, and 26. 

Classes 2, 3, 16, 24, and 26 correspond respectively to the following AHA codes: 22 (sinus 

bradycardia), 23 (sinus arrhythmia), 105 (incomplete right bundle-branch block), 145 (ST 

deviation), and 147 (T-wave abnormality). A possible reason for the confusion of class 0 with 

these classes is that these types of arrhythmia are considered difficult to diagnose in the medical 

literature because they may present similar characteristics in ECG data patterns. Sinus 

bradycardia, for example, normally presents ECG waves with the same morphology as those 

presented in a normal ECG despite presenting a smaller number of waves per minute. 

Therefore, the confusion of a sample belonging to class 0 with a sample belonging to class 3 

may be an indication that the model is considering wave morphology as the main pattern to 

differentiate the classes and, therefore, has some difficulty in classifying a sinus bradycardia 

sample as a type of arrhythmia. 

  
Figure 7. Confusion Matrix 

The Local Interpretable Model-agnostic Explanations (LIME) method was used to identify 

which features contributed most (or were most important) to the prediction of each class. LIME 

was applied to one sample of each class to identify among the 1,250 available features which 

were the 50 features that most contributed to the classification of that sample. Figures 8 to 12 

show as an example the result of applying LIME to samples of classes 0, 2, 3, 7, and 28. The 

red dots in the graphs represent the 50 features identified by LIME as the biggest contributors 

to the identification of each class. 
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The results presented by LIME can be useful in helping healthcare professionals interpret how 

the CNN model reached its conclusions, and evaluate whether the results presented are reliable 

and whether the model's decisions adhere to requirements related to responsibility, ethics, 

compliance, and regulation. Taking Figure 10 as an example, the features that most contributed 

to the classification of a sinus arrhythmia sample (AHA code 23) are mostly located in the P 

wave region and, according to cardiology concepts, sinus arrhythmia is characterized by 

variations in the P-P interval. Taking Figure 12 as an example, the features that most 

contributed to the classification of a sample of anterior myocardial infarction (AHA code 160) 

are mostly located in the ST segment region and, according to cardiology concepts, myocardial 

infarction is characterized by unevenness in the ST segment. 

Efforts to improve the interpretability of model decisions tend to contribute to increasing the 

acceptance of AI techniques by healthcare professionals as the "black box" nature of AI models 

has represented a challenge for the adoption of these techniques in the medical field. AI tools 

must offer the user an explanation of why a given patient has a given disease and the use of 

interpretability techniques such as LIME can help increase the comprehensibility of the model's 

decisions and contribute positively to the healthcare professionals' decision-making process. 

  
Figure 8. Feature importance for class 0 (Normal ECG) 

  
Figure 9. Feature importance for class 2 (Sinus bradycardia) 
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Figure 10. Feature importance for class 3 (Sinus arrhythmia) 

 

Figure 11. Feature importance for class 7 (Atrial flutter) 

 

Figure 12. Feature importance for class 28 (Anterior MI) 

Figures 13 and 14 show the history of accuracy and loss during training. It can be seen that the 

CNN model achieved high accuracy rates in the first iterations and converged with less than 

40 training epochs. It was observed that the use of Batch Normalization layers resulted in a 

more stable evolution of validation loss values and better test set accuracy when compared to 

training the same architecture without Batch Normalization layers. 



European Journal of Engineering Science and Technology, 7(2): 14-30, 2024 

28 

  
Figure 13. Accuracy history 

  
Figure 14. Loss history 

The CNN model uses 2,535,176 trainable parameters. A model with this number of parameters 

is normally considered to be of moderate complexity. This characteristic meets the objective of 

presenting a Deep Learning model that achieves a satisfactory accuracy rate in its predictions 

with the use of fewer computational resources for training. The decision to perform a 

resampling of the records to a frequency of 125 Hz proved to be correct as it made it possible 

to reduce the computational cost of training without compromising the model's performance. 

It was possible to obtain excellent performance using only data from lead II in the training and 

this result is interesting because wearable devices such as smartwatches, for example, make 

use of a single lead and the results obtained in this study demonstrate the feasibility of 

performing accurate cardiac monitoring using such devices. However, the decision to disregard 

the other leads in the study meant losing the possibility of carrying out comparative analyses 

to validate the assumption that lead II provides better results than other leads or perform 

analyses that can provide insights into the data of other leads. 
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5. Conclusion 

Deep Learning techniques have great potential for helping healthcare professionals identify 

and treat diseases. The possibility of analyzing exams quickly and automatically allows large 

amounts of information to be analyzed in less time, which can speed up processes in the 

medical field. Furthermore, professionals can count on a tool that helps reduce diagnostic errors 

and costs associated with the process.  

The development of low-cost Deep Learning models generates an alternative to enable the 

availability of cardiac monitoring technologies that can be used in wearable devices in 

environments outside laboratories and clinics. This possibility can be useful in cardiology 

practice because certain arrhythmias occur intermittently at different times of the day and it 

can be difficult to diagnose the occurrence of the arrhythmia during examinations in 

laboratories and clinics. 

Aspects related to ethics, transparency, responsibility, and legality represent a challenge for the 

adoption of AI-based technologies in medical practice because it is a highly regulated sector 

and AI-based systems need to meet a series of requirements to ensure that their results are 

considered valid and accepted. Concern about data quality, security, and bias is also an issue 

that poses challenges for the adoption of AI-based systems because healthcare professionals 

may become resistant to using the technology if they understand that there is not good data 

governance in conducting the processes. The need for healthcare professionals to be trained to 

use this type of technology also creates challenges for its adoption because it creates the need 

for the training of new healthcare professionals to be adapted to develop skills in the use of 

digital technologies in their daily practice. To overcome these challenges, investments are 

needed in adequate training of healthcare professionals to deal with AI-based technologies, the 

establishment of data governance frameworks that ensure data quality and security, the 

evolution of regulatory mechanisms associated with the use of AI in healthcare, and 

collaboration between healthcare and technology professionals to facilitate knowledge sharing. 

The proposed CNN model achieved results that satisfactorily meet the performance 

expectations intended for this study and proved to be an interesting option to deal with the 

problem in question. As a recommendation for future work, a comparative study between the 

leads is suggested to verify whether the performance of the model using the other leads could 

outperform the result obtained with lead II. A comparative study of the differences between 

leads could reveal useful insights into the data and contribute to research in the area. 
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