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 Hydrological models have been used to analyze the hydrological 

processes and availability of water in different watersheds. It is one 

of the most significant aspects of water resources management and 

development programme to use different hydrological models for 

predicting the flow of river basins. Calibration and validation of the 

developed hydrological model is also important so that the model 

users can be confident while estimating the flow of the watershed. In 

this study, a semi-distributed hydrological model was developed for 

0.176 million km2 Upper Blue Nile river basin using Soil and Water 

Assessment Tool (SWAT). The applicability of SWAT was assessed 

for rainfall- runoff simulation in Upper Blue Nile basin. The model 

was calibrated and validated using 10 years of discharge data. Model 

calibration and sensitivity analysis were performed with sequential 

uncertainty fitting (SUFI-2), which is one of the programs interfaced 

with SWAT, in the package SWAT-CUP. The most and least 

sensitive parameters were CN2 (curve number) and GW_DELAY 

(ground water delay time) respectively. Performance of the model 

was evaluated based on Nash Sutcliff Efficiency (NSE) and 

Coefficient of Determination (R2) which were 0.71 and 0.66 

respectively for calibration. Overall, the model demonstrated good 

performance in producing the patterns and trend of the observed 

discharge which assures the suitability of the SWAT model for future 

scenario analysis. Uncertainty analysis of the SWAT model of upper 

Blue Nile basin, consideration of other parameters and incorporating 

more flow data from other stations within the basin is recommended 

for future studies. 

 

1. Introduction 

It is widely agreed that a reliable hydrologic prediction is imperative to plan, design and manage 

water resources activities (Tiwari and Chatterjee, 2010). Various modelling tools, techniques and 

software (like MIKE SHE, SHETRAN, HEC HMS, SWAT) are available in the present context 

(Amr Fleifle, Ralf Ludwig, & Markus Disse, 2017; Chu Xuefeng & Steinman Alan, 2009; Nasr et 
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al., 2007). The developments in computing technology and recent advances in the availability of 

digital datasets and the use of geographic information systems (GIS) for water resources 

management have revolutionized the study of hydrologic systems (Jain & Sharma, 2014). 

Hydrologic models ranging from empirical to physically based distributed parameters have been 

developed to estimate runoff and sediment yield during the past three decades.  

The Soil and Water Assessment Tool (SWAT), an integrated river basin model, has been widely 

applied to simulate hydrological flows (A. van Griensven, P. Ndomba, F. Kilonzo, & S. Yalew, 

2012; Abbaspour et al., 2007; Nasr et al., 2007). Free availability and ready applicability through 

the development of geographic information system (GIS) based interfaces, and easy linkage to 

sensitivity, calibration and uncertainty analysis tools are highlighted as the reason behind its 

popularity (A. van Griensven et al., 2012). SWAT, developed by the United States Department of 

Agriculture - Agricultural Research Services (USDA - ARS), integrates the spatial analysis 

capabilities of GIS with the temporal analysis simulation abilities of hydrologic models. It is a 

small watershed to river basin-scale model to simulate the quality and quantity of surface and 

ground water and predict the environmental impact of land use, land management practices, and 

climate change (Amr Fleifle et al., 2017). It takes Digital Elevation Model (DEM), 

landuse/landcover, soil map and hydro-meteorological data as its inputs.  

The Upper Blue Nile basin has a varying topography, precipitation and temperature patterns 

(Melesse, Abtew, Setegn, & Dessalegne, 2011). Spatial distribution of annual rainfall over the 

basin is highly variable  with up to 2049 mm in southern tip compared to just over 794 mm in the 

north-eastern tip (Abtew, Melesse, & Dessalegne, 2009). The high variability in climate and 

paucity of necessary data in the basin underpins the difficulties in estimating hydrology in the 

region. Further, the basin is faced with problems relating to land degradation, limited amount of 

developed energy sources, and inadequate crops production. Use of hydrological models to better 

understand complex systems as such could be ideal to improve water resources and land 

management practices (Amr Fleifle et al., 2017). This is challenging because hydrological analyses 

in the basin have perennially suffered from limited data availability and lack of study attempting 

to identify good approaches to model dominant hydrological processes based on available data 

(Tegegne, Park, & Kim, 2017). 

Various studies have used the SWAT for a multitude of problems in the Upper Nile basin countries 

(Abtew et al., 2009; Amr Fleifle et al., 2017; Dile et al., 2018; Tegegne et al., 2017). However, a 

critical review of 20 peer reviewed research that demonstrated satisfactory to very good results 

using the SWAT model highlighted several paper using unrealistic parameter values while several 

others containing losses in hydrological mass balances that might not be justified, and some failed 

to report these components (A. van Griensven et al., 2012). The main recommendation was to 

provide more details on the model set-up, the parameters and outputs to allow for a more robust 

evaluation of these methods. Therefore, the first objective of this study was to build on the 

recommendation provided and use the SWAT model to estimate runoff in the Upper Blue Nile 

basin providing specific information about model-set up, the parameters and outputs. 

In addition, distributed hydrological modelling is subject to large uncertainties. Walker et al. (2003) 

defined uncertainty as “any deviation from the unachievable ideal of completely deterministic 

knowledge of the relevant system”. In hydrological simulations, uncertainties could arise from the 

imperfect knowledge and modelling of initial conditions, and errors in the model structure and 

parameters of the hydrological model (Van den Bergh & Roulin, 2016). To define and quantify these 

uncertainties, various analysis techniques have been prepared for watershed models like Bayesian 
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inference methods, such as: the Markov chain Monte Carlo (MCMC) method, generalized 

likelihood uncertainty estimation (GLUE), parameter solution (ParaSol), and sequential 

uncertainty fitting (SUFI-2) (ROSTAMIAN et al., 2008). Various studies have used SUFI-2 

algorithm for calibration and uncertainty analysis of their SWAT models (Abbaspour et al., 2007; 

Setegn, Srinivasan, & Dargahi, 2008; Talebizadeh et al., 2010) and have reported improvement in 

model performance. Therefore, the second objective of this study was to make use of SUFI-2 

algorithm for a combined calibration and uncertainty analysis and make comparison with manual 

calibration. 

2. Methods and Materials 

2.1 Study Area 

Eleven riparian countries share the Nile basin which is the lifeline for 238 million of people. The 

water of Nile river basin has been used by upstream and downstream residents for domestic, 

agricultural, industrial and other purposes such as hydropower, ecosystem etc. (Dile et al., 2018). 

The length of the Nile river is 6,670 km with a watershed area of 3.2 million km2 (El Bastawesy, 

Gabr, & Mohamed, 2015).  

The White Nile and the Blue Nile forms the Nile river. Upper Blue Nile is the biggest tributary of 

Nile river and largest river basin in Ethiopia depending on the flow volume. Ethiopia’s 17% area 

is comprised by it which is 176000 km2 out of 1100,000 km2 (D. Conway, 2000). The mean annual 

discharge of this area is 1536 m3/sec (Mengistu et al., 2014) .  The climate is dependent on the 

elevation. It is normally tropical at lower elevation and temperate on higher elevation (D. (Climatic 

R. U. Conway, 1997). The basin has mono-modal type rainfall. From 1990-1998 the annual rainfall 

ranged between 1150-1750 mm/year. The average rainfall was 1420 mm/year (Tekleab, 

Mohamed, & Uhlenbrook, 2013). The average yearly potential evapotranspiration varies spatially 

and high. It varies from 1000-1800 mm/ year (D. Conway, 2000). The mean annual temperature 

was estimated 18.5° C with some seasonal variation (less than 3° C) (Mengistu et al., 2014).  
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Figure 1: Blue Nile River basin 

 

 

 

Leptosols and Vertisols are the dominant types of soil in the study area (Kim & Kaluarachchi, 

2009). The geology of the basin is characterized by basalt rocks, which are discovered in the 

highland of Ethiopia. On the contrary, metamorphic rocks and basement rocks cover the lower part 

of Ethiopia (Tekleab et al., 2013). 

2.2 Methodology 

For this catchment, different data sets were used in the study. Food and Agricultural Organization 

of United Nation (FAO-UNESCO) developed the 1000 m resolution soil map which was used in 

ArcSWAT. The map was collected from SOIL-FAO database. Vegetation and their parameters 

were calculated using the 1000 m resolution land use map which was collected from the database 

of USGS-United State Geological Survey. Time series for daily rainfal and water flow covering 

the period from January 1961 to December 2002 were available for developing, calibrating and 

validating the model. 

2.2.1 Model Setup 

For this catchment, different data sets were used in the study (Table 1).  
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Table 1: Necessary data to develop the model 

GIS Data Meteorological Data Observed Data 

DEM Rainfall Flow data  

Land use Wind 

Soil type Temperature 

Relative humidity 

 

The model built up was done in the following four steps: 

2.2.1.1 Watershed Delineation 

Watershed delineating was done by loading topography, contour and slope from the DEM (90 m 

x 90 m) followed by burning in the river shape file and defining the stream flow direction and 

accumulation. The outlet for whole watershed was defined and then the sub basin parameters were 

calculated. Finally, 25 sub basins were created. The delineated watershed map is represented in 

Figure 2. 

 

 

Figure 2: Watershed delineation in Arc Swat 

 

 

2.2.1.2 HRU Analysis 

In this step, the catchment was divided into 299 HRU’s based on the distribution of land use and 

soil classes. At first the land use and soil map were loaded and for slope, multiple slope with three 

slope classes were defined and then they were reclassified. Multiple HRU’s with threshold of 10%, 

0% and 25% for land use, soil and slope class respectively were selected for HRU’s analysis. It 

reduces the computational costs of simulations by adding same types of soil and land use areas 

into a single unit. 
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2.2.1.3 Writing Input Tables 

After creating the sub basins and HRU’s, input files were created by using the available weather 

data. Then input tables were created with default values which are used for further analysis in the 

Upper Blue Nile SWAT model.  

2.2.1.4 Model Simulation 

Finally, a time period of 01 Jan 1968 to 31 Dec 1972 with one-year warm up period was used to 

run the model with default values. 

2.2.2 Sensitivity Analysis 

Sensitivity analysis is an effective way to study the behavior of parameter and for determining how 

the model input has an influence on model output and its uncertainty. It is as important as 

calibration process because it allows user to determine the most sensitive parameters and to have 

an idea which parameter needs to be calibrated in order to reduce the model uncertainty. Sensitivity 

analysis can further be subdivided into two categories based on the use of the automatic tools 

(manual vs automated sensitivity analysis ) and the number of analyzed parameters (one at a time 

vs global sensitivity analysis) (Brouziyne et al., 2017) 

For this study, SWAT CUP 2012 was used to perform sensitivity analysis. Global sensitivity 

analysis was carried out for 26 different SWAT input parameters. A new project was created by 

using SUIF2 calibration method. The Par_inf_txt was defined by providing the 26 parameters that 

need to be estimated along with the min and max range. Other information such as observation 

data, start and end of simulation, Nash Sutcliffe (NS) with a threshold of 0.2 etc. were defined and 

executed for 800 simulations.  

2.2.3 Manual Calibration 

Calibration is a process to adjust model parameter in order to predict the model results as closely 

to observation. It is an important step for analyzing conceptual model. Manual calibration is 

performed by the user to reduce the prediction uncertainty by changing the parameter to the desired 

condition and then comparing with model output with observed data for the same condition. 

However, it can take a longer time to complete even a single model calibration depending on the 

size of watershed, simulation period and spatial resolution (P. W. Gassman et al., 2007). Hence, 

for the effective and successful manual calibration, expert judgment along with the extensive 

knowledge about the catchment are very important to decide which parameter to adjust and how 

much to adjust to obtain reasonable result. Then, goodness of fit between model results and 

observation was determined by different objective functions like Nash-Sutcliffe coefficient (NSE), 

determination coefficient (R2) etc. 

2.2.4 Automatic Calibration 

Automatic calibration is a process to improve the quality of the model that is calibrated manually 

by obtaining a better objective function for simulated values. In this step, final parameter values 

obtained from the manual approach were used as an initial value for auto calibration in the SWAT 

Cup. Swat Cup 2012 is a freeware auto-calibration program which allows the use of various 

algorithm for optimization of SWAT results in hydrological modeling. It can be used for sensitivity 

analysis, calibration, validation and uncertainty analysis of SWAT models and also to visualize 

watershed. However, in this study, SWAT-Cup was applied only for sensitivity analysis and 

automatic calibration using a SUFI2 optimization program by representing uncertainties from 
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various sources. To calibrate a model in SWAT CUP, it is important to select objective function 

on which the iteration will estimate the best parameter and best simulation flow. So, Nash–

Sutcliffe model efficiency coefficient (NSE) was used as an objective function to compare model 

results with observation values. 

2.2.5 Model Validation 

Calibration is followed by validation. Validation is a process to determine whether the developed 

model for a specific study area yields acceptable simulation for any time period. It involves running 

a model using parameters that were determined during the calibration process (manual and 

automatic), and comparing the predicted value to observed data for a different time period. For 

this purpose, time period of 1974-1978 with one year as warm up was used for validating both the 

result obtained from manual as well as automatic calibration. Finally, results were analyzed with 

objective function and also graphically by observing simulated flows with observation flows. 

3 Results and Model Evaluation 

3.1 Sensitivity Analysis 

Out of the 26 parameters, only few parameters that are most sensitive for flows were determined 

based on p-test and t-test. A t-test determines the relative significance of each parameter and ranks 

the parameter based on the absolute values (i.e. larger the absolute values, more sensitive the 

parameter is) whereas p-test determines the sensitivity of the parameter (i.e. value closes to zero 

has more significance) (GRIENSVEN, 2017). The most sensitive parameters are shown below in 

the Table 2: 

 

Table 2: Sensitive parameters 

Parameters t-stat Fitted 

Value 

Min-Max 

Value 

CN2 -18.73 -0.072 -0.5-0.25 

SOL_K -18.00 1341.25 0-2000 

CH_K2 17.91 79.78 0.150 

ALPHA_BF -13.06 0.00063 0-1 

SLSUBBSN 12.05 65.21 10-150 

HRU_SLP -10.03 0.0094 0-1 

CH_N2 7.41 -0.224 -0.5-0.25 

SOL_AWC 6.02 0.431 -0.25-0.6 

EPCO 4.36 0.524 0.1-1 

RCHRG_DP 3.69 0.183 0-1 

ESCO -2.77 0.993 0.8-1 

GW DELAY 2.69 25.37 1-60 
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3.2 Initial Model Result 

Simulation was done for 5 years (1968-1972) with 1-year warmup year. After running the 

simulation, initial simulated values were obtained. There is a huge difference between the observed 

and simulated outflow which states the overestimation of the parameters in Figure 3. The NSE 

value is -5.81 which shows poor performance of the model. That is why manual calibration was 

done, to obtain a satisfactory objective function.  

 

 

Figure 3: Model outflow with default parameters 

 

3.3 Model Calibration/Validation 

 

3.3.1 Manual Calibration Results  

At the beginning Curve number, CN2 parameter was selected for the optimization of the model 

result. With the help of manual calibration helper CN2 values of all 25 sub-basins were reduced to 

15% from the default value. After running the model with changed CN2 values, the model was 

still overestimating simulated total flow which is shown in Figure 4. The calibrated CN2 value 

ranges between 35-98. With decreasing CN2 value the surface runoff decreases. But infiltration, 

base flow and recharge increases. As a result, the total outflow increases. Also, Nash-Sutcliffe 

efficiency is -3.498, which proves poor performance of the model and suggests further 

improvement. So, our purpose was to reduce the value of baseflow more to match the simulated 

flow with the observed one. 
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Figure 4: Manual calibration with changed CN2 value 

 

After the first iteration, some other parameters were taken into consideration. By changing the, 

Sol_AWC, ESCO, CH_K2, CH_N2, CANMX, RCHRG_DP values, the model was calibrated 

again. Alpha_BF and GW delay were also modified to calibrate the baseflow. GW_Delay is 

defined as the time which water takes to enter into the shallow aquifer by going out from the soil 

profile (Me, Abell, & Hamilton, 2015). The range of GW delay is from 0-500 days. It affects the 

width and time of the peak (Ahl, Woods, & Zuuring, 2008). Alpha_BF is also sensitive in discharge 

simulation. When this value decreases it shifts the lag time ahead. Aquifer percolation coefficient 

also increases recharge in deep aquifer with its increasing value. Water can again go to the 

unsaturated zone running from shallow aquifer. Groundwater revap coefficient (GW_REVAP) 

was increased from 0.02 to 0.17, so that less amount of water transfer to the root zone. Water going 

to deep aquifer as recharge can be influenced by RCHRG_DP, Soil evaporation compensation 

factor (Huber, 2015). ESCO decreases the run-off, evapotranspiration and baseflow when its value 

reduces. If soil available water (Sol_AWC) is larger, it holds more water which results in lower 

surface runoff and percolation (Jha, 2011). Hydraulic conductivity of the soil (SOL_K) was 

increased to reduce the movement of water through the soil. On the contrary, effective hydraulic 

conductivity (CH_K2) was also increased to 75 mm/hr. After changing these parameters, the 

model efficiency improved. 

At last, changing the parameter values increased the NSE and improved the model efficiency. 

From the graph given below (Figure 5), it is observed that the observed and model outflow has 

better match. The observed and simulated discharge matched quite well from 1971-1972. 

However, there is some under-estimation of simulated discharge in some of the days during high 

flows. The NSE value is 0.71 which falls within the range (0-1). 
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Figure 5: Manual calibration with final parameter values 

 

 

 

 

Table 3: Adopted parameter value 

Parameter Default Value Adopted Value 

CN2 83 70.38 

Alpha_BF 0.048 0.35 

Sol_AWC 0.17 0.34 

GW delay 31 100 

RECHRG DP 0.05 0.2 

ESCO 0.95 0.9 

CH_K2 0 75 

CH_N2 0.014 0.1 

Gwqmn 1000 1700 

Gw REVAP 0.02 0.17 

SOL K 25.56 24.74 

CANMX 0 3 

 

3.3.2 Manual Validation Results  

Validation is the process where it is shown that the model is able to give approximate accurate 

results. After manual calibration, validation was done with the calibrated model for a different 

period of time. The validation period was focused on the year (1974-1978) and 1 year was included 

as a warm up year. After running the model, model outflow and observed flow were compared 

which is represented in Figure 6. 
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Figure 6: Manual validation with final parameter values 

 

 

In the validated model simulated total outflow was higher than the observed flow. However, the 

NSE values was 0.79. In manual calibration, only some parameters were chosen. That is why 

automatic calibration is needed to get more accurate simulation. 

3.3.3 Automatic Calibration Results: 

After providing all the parameter input, first iteration was performed for only 10 simulations to 

obtain an idea about parameter range and by manually adjusting some parameter, the model was 

calibrated with around 2000 simulations till 8 iterations unless we obtained satisfactory value for 

specified NSE objective function. 

Figure 7: Final automatic calibration with 10 simulations 

 

Iteration 8 was taken as the final result for automatic calibration using SUFI2. Figure 7 shows that 

the model is still underestimating high flows at some time period. However, this iteration gave us 

a satisfactory NSE value of   0.87, which represents the good performance of the model. This can 
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be proved visually also as the simulated outflow is more or less similar with the observed outflow. 

Final parameter values obtained after the automatic calibration is represented in Table 4. 

 

Table 4: Final parameter values for automatic calibration 

 

Parameter Calibrated Value 

CN2 0.11 

Alpha_BF 0.19 

GW_DELAY 93.93 

GWQMN 4545.50 

CH_K2 133.88 

ESCO 0.68 

GW_REVAP 0.15 

RCHRG DP 0.00 

SOL_AWC 0.00 

SOL K -0.43 

3.3.4 Automatic Validation Results 

Validation was again performed as a next step to check whether the model can predict uncertainty 

for five years simulation period of 1974-1978 including one year as warm up period. 

 

 

Figure 8: Automatic validation result 

 

The result gave an NSE of 0.66 which indicates good performance of model however visually we 

can see that the model is underestimating high flows for first event and the simulated flows are 

also lagged forward.  

3.4 Model Evaluation 

Model evaluation is considered as an important step in model development process. In order to 

determine whether or not a model is capable to obtain prediction close to observed data and to 

determine which best model for our data, one need to have a quality check benchmark. 
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3.4.1 Performance Indexes: 

Although statistical data are interpreted visually also, NSE objective function is used as a measure 

to check goodness of fit for outflow from the catchment. NSE is a dimensionless value which 

shows goodness of fit between observed and simulated data. It ranges from - ∞ to 1 with 1 being 

the model with acceptable range of uncertainty and NSE values of 0.54-0.64 are adequate and any 

values greater than 0.5 are satisfactory (D. N. Moriasi et al., 2007). 

 

Table 5: Performance indexes for manual calibration 

 

Iteration NSE Iteration NSE 

Default -5.82 5 0.25 

1 -3.50 6 0.47 

2 -3.99 7 0.58 

3 -1.37 8 0.71 

4 -0.90   

 

From Table 5, we can see that the model result was improved in each iteration and the final 

iteration 8 with an NSE value of 0.71 shows that model performance is good. As the manual 

calibration is tedious and less accurate, automatic calibration was done to obtain more precise 

result. 

 

Table 6: Performances indexes for automatic calibration 

Iteration NSE Iteration NSE 

1 0.08 5 0.85 

2 0.33 6 0.86 

3 0.53 7 0.86 

4 0.8 8 0.87 

The iteration 8 yields the best model result with an NSE of 0.87 which shows good performance 

of the model (Table 6). This can be proved with another index R2 which has a value of 0.87 (closer 

to 1) describes good proportion of variance of measured data. The p-factor of 0.7 represents that 

70% of the observations are covered in 95% of uncertainty and r-factor of 0.36 represents the 

thickness of 95PPU band divided by standard deviation of measured data which is close to 0. 

Hence, we can say that the model is able to predict uncertainty more precisely in automatic 

calibration. 

As the model calibration was good based on evaluation criteria, model validation was again done 

to check whether the model can predict flows accurately for a time period of 1974-1978 (one-year 

skip) than those for which the model was calibrated. 
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Table 7: Performances indexes for validation 

Calibration NSE 

Manual 0.63 

Automatic 0.66 

 

From Table7, it is visible that in case of manual and automatic validation, NSE shows a satisfactory 

performance result. NSE values were more accurate in automatic validation.  

4 Conclusion and Recommendations 

While surface water modelling is indispensable for making basin management decisions including 

flood/drought forecasting and preparedness, we should be aware that no model can be a perfect 

model which represents the physical reality of nature exactly as it is because of possibilities of 

uncertainties in data, calibration parameters as well as the model structure. The SWAT model in 

this exercise overestimated and then underestimated the flow for automatic calibration and 

validation respectively. The following deliberates on the possible reasons for the disaccord 

between simulated and observed flows and recommendations to remedy them: 

1. To decrease complexities in calibration, the model was built up with 299 HRUs which reduces 

the spatial variability of the physical components like land cover, soil and slope of the 

catchment. Increasing the number of HRUs could enhance model performance in the expense 

of higher computation time.  

2. Around 15% of observed data in both calibration and validation were missing in this exercise. 

These missing values were eliminated to form a continuous time series. Because of this, there 

is a possibility that with the complete time series, the corresponding parts of observed and 

simulated hydrograph for every rainfall event would be considered which could potentially 

increase the goodness of fit of the statistical indicator values.  

3. The major parameters affecting the hydrological processes were taken into consideration in 

this exercise and were juxtaposed with available literature about Blue Nile basin online 

wherever possible. However, SWAT’s copious nature of parameters meant there were lot of 

parameters that were not modelled in this exercise. A broader utilization of parameters could 

also enhance the performance of the model.  

4. The temporal variability between meteorological data and remote sensing data could intimate 

that the given remote sensing data, like land cover for instance, might not be representative 

of the actual conditions for the duration of time whose meteorological data are being used. 

Factors such as urbanization, land use changes have potential to significantly alter the land 

cover map of any area. Reducing the temporal variability could result in better model 

performance too.  

Besides these, there are other aspects, which could be considered to improve the performance of 

the model. Increasing the calibration duration could consider extreme events as well, which would 

result in increased predictability of the model with regards to extreme events. Further, flow data 

from additional stations within the catchment could be used for calibration in order to improve the 

accuracy of the model. 
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