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Abstract  

Stochastic Frontier Analysis plays a crucial role in assessing technical efficiency and modelling 

production processes across various disciplines. Traditionally, SFA assumes specific error 

distributions, such as the normal distribution for random effects and the half-normal 

distribution for technical efficiency. However, the choice of error distributions can significantly 

impact model estimation and interpretation. This study proposes a novel approach by 

incorporating the Lindley distribution as a flexible error distribution in SFA, termed Lindley 

Stochastic Frontier Analysis (L-SFA). This extension offers a more detailed representation of 

the error structure, potentially enhancing the accuracy of efficiency estimates. The derivation 

and solution of maximum likelihood estimators for the theoretical foundations of L-SFA are 

provided. Furthermore, a simulation study demonstrates the advantages of L-SFA over 

traditional SFA. The findings underscore the importance of flexible error distributions in 

capturing the complexities of production processes with this new SFA extension. 

Keywords: Efficiency, Error distribution, Lindley stochastic frontier analysis, Maximum 

likelihood estimation, Simulation 

1. Introduction 

For benchmarking, two dominant methods are Data Envelopment Analysis (DEA) and 

Stochastic Frontier Model (SFM). DEA is non-parametric, while SFM is a parametric method. 

In the parametric approach, the production function has a specific functional form with 

unknown parameters, as represented in Eq. 1: 

𝑓(𝑥) = 𝑓(𝑥; 𝛽)      (1) 

For 𝑣𝑖 ∈𝑅 and 𝑢𝑖 ∈𝑅+, additional forms are obtained and represented as follows: 

𝑓(𝑥) = 𝑓(𝑥; 𝛽) + 𝑣     (1.a) 

𝑓(𝑥) = 𝑓(𝑥; 𝛽) − 𝑢     (1.b) 

𝑓(𝑥) = 𝑓(𝑥; 𝛽) + 𝑣 − 𝑢     (1.c)  

https://doi.org/10.33422/worldmbf.v2i1.532
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These forms correspond to the regression, deterministic, and stochastic models, respectively. 

In this study, we focus on SFM, represented by equation (1.c). SFM was introduced by Aigner, 

Lovell, and Schmidt in 1977, and independently proposed by Meeusen and van den Broeck 

(1977). SFM is used to estimate technical efficiency and model production (Battese and Coelli, 

1992). The model includes an error term with two components, as represented in Eq. 2:  

𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖      (2) 

where 𝑣𝑖 and 𝑢𝑖 represent noise and inefficiency, respectively. It is assumed that 𝑣𝑖~𝑁(𝑂, 𝜎𝑣2) 

and 𝑢𝑖~|𝑁(𝑂, 𝜎𝑢2)|. In this study, it is assumed that 𝑣𝑖 is distributed as the Lindley distribution 

(LD), resulting in a more flexible model for SFM. Moreover, the relationship between the 

Lindley distribution and other distributions commonly used in the literature (such as 

exponential and gamma) provides significant motivation for exploring LD in the context of 

SFM.  

In the literature, half-normal and exponential distributions have been employed by Aigner et 

al. (1977) for modeling 𝑢𝑖, and these models are frequently utilized for efficiency analysis. 

Models using half-normal and exponential distributions for the one-sided error (𝑢𝑖) represent 

inefficiency, while the two-sided error (𝑣𝑖) representing noise follows a normal distribution. 

There are numerous studies that focus on the distribution of 𝑢𝑖, including truncated-normal 

(Stevenson, 1980), gamma (Greene, 1990), binomial (Carree, 2002), Weibull (Tsionas, 2007), 

mixture (Kumbhakar et al., 2013), and double truncated normal (Almanidis et al., 2014) 

distributions. These studies generally assume that the two-sided error (𝑣𝑖) is normally 

distributed. However, the Laplace distribution has also been used in SFM for the two-sided 

error (Horrace and Parmeter, 2014).  

In this study, we propose that the two-sided error (𝑣𝑖) representing noise is normally 

distributed, while the one-sided error (𝑢𝑖) representing inefficiency follows a one-parameter 

Lindley distribution. This leads to the introduction of the Lindley-Stochastic Frontier Model 

(L-SFM) as an alternative approach for efficiency measurement. In this context, the second 

section briefly discusses the one-parameter Lindley distribution, introduces the L-SFM based 

on LD, and outlines its estimation methods. In the third section, the estimators commonly used 

in the literature are compared with the proposed estimator through a simulation study. Finally, 

the findings are presented in the results section. 

2. Literature 

The stochastic frontier model (SFM) has evolved as a critical tool in econometrics for analysing 

technical efficiency across various sectors. The foundational work by Aigner, Lovell, and 

Schmidt (1977) laid the groundwork by formulating and estimating stochastic frontier 

production function models. This approach was pivotal in introducing the concept of a 

composed error term, where one component captures inefficiency while the other captures 

random noise. Meeusen and van den Broeck (1977) further contributed to this field by applying 

the stochastic frontier approach to the Cobb-Douglas production function. Their work 

emphasized efficiency estimation in the presence of composed error terms, reinforcing the 

robustness of SFMs in economic research. Subsequent research has expanded on these initial 

models. Battese and Coelli (1992) introduced panel data into the stochastic frontier framework, 

allowing for more dynamic analysis of technical efficiency over time, particularly in 

agricultural settings. This was a significant advancement, enabling the study of efficiency in 

the context of longitudinal data.  
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Stevenson (1980) and Greene (1990) both contributed to the generalization of the stochastic 

frontier model by exploring different distributions for the inefficiency term. Stevenson focused 

on likelihood functions for generalized stochastic frontier estimation, while Greene proposed 

a gamma-distributed inefficiency component, offering more flexibility in modelling. Further 

innovations include Carree's (2002) investigation into the technological inefficiency and the 

skewness of the error component in SFM, and Tsionas' (2007) application of the Weibull 

distribution in efficiency measurement. These studies highlight the ongoing refinement of the 

SFM to better capture the complexities of inefficiency in various economic contexts. 

The development of the zero-inefficiency stochastic frontier model by Kumbhakar, Parmeter, 

and Tsionas (2013) represents another significant advancement, allowing for the possibility 

that some firms operate on the frontier with no inefficiency. Almanidis, Qian, and Sickles 

(2014) extended this by introducing bounded inefficiency in SFM, which provides a more 

realistic approach by setting a lower bound on inefficiency. 

Recent studies continue to explore the frontiers of efficiency analysis using SFM. Makieła and 

Mazur (2022) examined model uncertainty and its implications for efficiency measurement, 

addressing the challenges posed by generalized error distributions. The applications of SFM in 

specific contexts, such as the assessment of technical efficiency in Turkish banks (Kantar & 

Yenilmez, 2017) and universities (Yenilmez et al., 2022; Yenilmez, 2024), demonstrate the 

versatility and adaptability of SFM in different economic environments. 

3. An Alternative for Stochastic Frontier Analysis 

This study represents the first known instance of employing the Lindley distribution (LD) to 

model the one-sided error component in Stochastic Frontier Analysis (SFA). The LD's 

relationship with other distributions commonly used in SFA makes it a compelling alternative. 

Accordingly, the Lindley distribution is introduced, and the SFA model based on LD is derived. 

3.1. Lindley Distribution 

The Lindley distribution is used to model 𝑢𝑖. The probability density function (PDF) 𝑓𝑢(. ) and 

cumulative density function (CDF) 𝐹𝑢(. ) of the random variable uuu with parameter www are 

given as follows: 

𝑓(𝑢;𝑤) =
𝑤2

1+𝑤
(1 + 𝑢)𝑒−𝑤𝑢 𝑢 > 0,   𝑤 > 0   (3) 

𝐹(𝑢; 𝑤) = 1 −
𝑒−𝑤𝑢(1+𝑤+𝑤2)

1+𝑤
 𝑢 > 0,   𝑤 > 0   (4) 

Figure 1 illustrates the PDF of the Lindley distribution for selected values of 𝑤. 
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Figure 1: The PDF of the LD for selected values of w 

 

3.2. Lindley Stochastic Frontier Model and Estimation 

To estimate the unknown parameters in a Stochastic Frontier Model (SFM), the Maximum 

Likelihood Estimation (MLE) procedure can be employed. For this, the probability density 

function (PDF) of the combined error term must be known. In the seminal study by Aigner et 

al. (1977), the error components 𝑣 and 𝑢 are assumed to follow normal and half-normal 

distributions, respectively. Aigner et al. (1977) addressed the distribution of 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖 and 

derived the log-likelihood function for the likelihood estimation procedure. 

In this study, it is assumed that 𝑣𝑖~𝑁(𝑂, 𝜎𝑣2) and 𝑢𝑖~Lindley(w). Under these assumptions, the 

probability density function (PDF) of the combined error term 𝜀𝑖= t𝑖=𝑣𝑖−𝑢𝑖 is derived as 

follows: 

𝑓𝑡(𝑡) = ∫ 𝑓𝑣,𝑢(𝑢 = 𝑣 − 𝑡, 𝑣)𝑑𝑢
∞

−∞
= ∫ 𝑓𝑣,𝑢(𝑢, 𝑣 = 𝑡 + 𝑢)𝑑𝑢

∞

−∞
   (5) 

It is assumed that the random variables v and u are independent. Therefore, the joint PDF is 

found as: 𝑓𝑣,𝑢(𝑣, 𝑢) = 𝑓𝑣(𝑣)𝑓𝑢(𝑢). 𝑣𝑖~𝑁(𝑂, 𝜎𝑣2) = 𝑁(𝑂, s2) and 𝑓𝑣(𝑣) =
1

𝑠√2𝜋
𝑒
−
(𝑡+𝑢)2

2𝑠2 ; 

𝑢𝑖~Lindley(w) and 𝑓𝑢(𝑢) =
𝑤2

1+𝑤
(1 + 𝑢)𝑒−𝑤𝑢. If the problem, initially solved as an indefinite 

integral up to this stage, is now evaluated using specific boundaries as a definite integral, the 

solution will take the following form: 

= −
𝑤2𝑒

𝑠2𝑤2

2
+𝑡𝑤

2√𝜋(𝑤+1)
(√𝜋 𝑒𝑟𝑓 (

√2𝑠2𝑤+√2𝑡

2𝑠
) + 𝛤 (

1

2
,
𝑠4𝑤2+2𝑠2𝑡𝑤+𝑡2

2𝑠2
) 𝑠2𝑤)   

−
𝑤2𝑒

𝑠2𝑤2

2
+𝑡𝑤

2√𝜋(𝑤+1)
(𝛤 (

1

2
,
𝑠4𝑤2+2𝑠2𝑡𝑤+𝑡2

2𝑠2
) 𝑡 − √2𝛤 (1,

𝑠4𝑤2+2𝑠2𝑡𝑤+𝑡2

2𝑠2
) 𝑠 − √𝜋) (6) 

where 𝛤(𝛼, 𝛽) is upper incomplete gamma functions and it is assumed that𝑠2𝑤 + 𝑡 > 0𝑠 > 0. 

To use Maximum Likelihood Estimation (MLE) in Stochastic Frontier Analysis (SFA), the 

likelihood function 𝐿 = 𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑛) = ∏ 𝑓(𝑡𝑖)
𝑛
𝑖=1  must be determined. The first step in this 

process is to find the logarithm of the density function of t; (𝑙𝑜𝑔 𝑓 (𝑡)).  
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       𝑙𝑜𝑔 𝑓 (𝑡) = 𝑙𝑜𝑔 (−
𝑤2𝑒

𝑠2𝑤2

2
+𝑡𝑤

2√𝜋(𝑤+1)
(√𝜋 𝑒𝑟𝑓 (

√2𝑠2𝑤+√2𝑡

2𝑠
) + 𝛤 (

1

2
,
𝑠4𝑤2+2𝑠2𝑡𝑤+𝑡2

2𝑠2
) 𝑠2𝑤)+. . .

    

       −
𝑤2𝑒

𝑠2𝑤2

2
+𝑡𝑤

2√𝜋(𝑤+1)
(𝛤 (

1

2
,
𝑠4𝑤2+2𝑠2𝑡𝑤+𝑡2

2𝑠2
) 𝑡 − √2𝛤 (1,

𝑠4𝑤2+2𝑠2𝑡𝑤+𝑡2

2𝑠2
) 𝑠 − √𝜋)) (7) 

The log of the joint density function, also known as the log-likelihood, is expressed as: 

       𝑙𝑜𝑔 𝐿 = 𝑙𝑜𝑔 𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑛) = ∑ 𝑙𝑜𝑔 𝑓 (𝑡𝑖)
𝑛
𝑖=1     (8) 

After taking the partial derivatives of the 𝑙𝑜𝑔 𝐿 function with respect to the parameters of 

interest, the likelihood equations are obtained. 

4. Analysis and Results 

A simulation study is conducted to compare the relative bias and Mean Squared Error (MSE) 

of Maximum Likelihood Estimates (MLEs) under different distributions. The simulation of the 

Stochastic Frontier Model (SFM) for cross-sectional data of firms is based on production 

functions. Given the advantages of linear transformation in econometric models, both Cobb-

Douglas and trans-log production functions are utilized. The Cobb-Douglas production 

function and the trans-log production function are presented in equations (30) and (31), 

respective.  

𝑙𝑜𝑔(𝑦𝑖) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗𝑡
𝑛
𝑗=1       (9) 

𝑙𝑜𝑔(𝑦𝑖) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝑛
𝑗=1 + ∑ 𝛽𝑗𝑘𝑥𝑖𝑗𝑡𝑥𝑖𝑘𝑡

𝑛
𝑘=1    (10) 

In this context, the Cobb-Douglas production function is utilized due to its ease of 

implementation and interpretation. The parameters of the Cobb-Douglas production frontier 

are estimated using the following equation: 

𝑙𝑜𝑔(𝑦𝑖) = 𝛽0 + 𝛽1 𝑙𝑜𝑔(𝑥𝑖) + 𝜀𝑖  for 𝑖 = 1,2, … , 𝑛   (11) 

where 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖. 

In the simulation procedure, 1,000 datasets are generated, with sample sizes of 100, 250, 500, 

and 750. The error term 𝑣𝑖 is assumed to follow a normal distribution, while 𝑢𝑖 is distributed 

as half-normal, exponential, gamma, Weibull, log-normal, and Lindley distributions. The 

formulas for bias and Mean Squared Error (MSE) are presented as follows:  

 𝐵𝑖𝑎𝑠(𝑦̂) = (
1

1000
∑ 𝑦̂𝑖
1000
𝑖=1 ) − 𝑦    (12) 

 

𝑀𝑆𝐸(𝑦̂) = (
1

1000
∑ (𝑦̂𝑖 − 𝑦)21000
𝑖=1 )    (13) 

The simulation results are presented in Tables 1-3. Table 1 indicates that for the Half-Normal 

error distribution, the MLE based on the Half-Normal distribution (MLEHalf-Normal) generally 

exhibits lower bias and MSE values as the sample size increases. This is particularly evident 

in larger samples (n = 500 and n = 750), where the MLEHalf-Normal achieves the lowest MSE 

(0.003) compared to MLEExponential and MLELindley. Under the Exponential error distribution, 
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the MLE based on the Exponential distribution (MLEExponential) consistently shows lower MSE 

values across all sample sizes compared to MLEHalf-Normal and MLELindley. This trend is 

particularly strong for larger sample sizes (n = 500 and n = 750), where MLEExponential achieves 

the lowest MSE (0.020) and relatively low bias. The MLELindley, while performing reasonably 

well under the Exponential distribution for larger sample sizes, shows higher MSE values under 

the Half-Normal error distribution, indicating its reduced effectiveness when the error term 

does not align with the Lindley distribution. 

Table 2 reveals that for the Gamma error distribution, the results show that MLEHalf-Normal and 

MLEExponential tend to have lower bias and MSE in smaller sample sizes (n = 100 and n = 250). 

However, as the sample size increases to n = 500 and n = 750, MLEExponential performs slightly 

better in terms of MSE. Under the Weibull error distribution, MLELindley demonstrates strong 

performance with lower MSE values, particularly in larger samples (n = 500 and n = 750). This 

suggests that the Lindley distribution's shape flexibility may offer advantages in capturing the 

distributional characteristics of the Weibull error term.   

Table 1: Simulation results for estimators under Half-Normal and Exponential error distributions for 

𝑢𝑖 
 𝜀𝑖= t𝑖=𝑣𝑖−𝑢𝑖 𝑣𝑖 u𝑖 𝑣𝑖 𝑢𝑖 

 Distribution Normal Half-Normal Normal Exponential 

n Estimators Bias MSE Bias MSE 

100 

MLEHalf-Normal 0.074 0.083 0.895 0.272 

MLEExponential 0.190 0.080 0.078 0.332 

MLELindley 1.532 0.217 -0.077 0.230 

250 

MLEHalf-Normal 0.145 0.017 -0.121 0.073 

MLEExponential 0.014 0.027 -0.017 0.069 

MLELindley 0.446 0.178 0.710 0.065 

500 

MLEHalf-Normal 0.296 0.010 0.032 0.050 

MLEExponential 0.033 0.010 -0.090 0.045 

MLELindley 0.835 0.151 0.875 0.058 

750 

MLEHalf-Normal 0.191 0.003 -0.015 0.025 

MLEExponential 0.008 0.004 -0.004 0.020 

MLELindley 1.560 0.058 0.741 0.030 

Table 2: Simulation results for estimators under Gamma and Weibull error distributions for 𝑢𝑖 
 𝜀𝑖= t𝑖=𝑣𝑖−𝑢𝑖 𝑣𝑖 u𝑖 𝑣𝑖 𝑢𝑖 

 Distribution Normal Gamma Normal Weibull 

n Estimators Bias MSE Bias MSE 

100 

MLEHalf-Normal -0.413 0.253 -0.353 0.140 

MLEExponential -0.323 0.224 -0.175 0.140 

MLELindley 1.834 0.719 0.589 0.253 

250 

MLEHalf-Normal 0.452 0.089 0.096 0.076 

MLEExponential 0.071 0.083 -0.002 0.069 

MLELindley 0.791 0.327 0.942 0.065 

500 

MLEHalf-Normal 0.070 0.058 0.014 0.059 

MLEExponential 0.117 0.054 0.040 0.055 

MLELindley 1.065 0.043 0.975 0.050 

750 
MLEHalf-Normal -0.033 0.034 -0.049 0.032 

MLEExponential -0.030 0.034 -0.031 0.032 



Yenilmez / A New Approach Using the Lindley Distribution in Stochastic Frontier Analysis 

35 

MLELindley 0.781 0.029 1.118 0.024 

Table 3: Simulation results for estimators under Log-Normal and Lindley error distributions for 𝑢𝑖 
 𝜀𝑖= t𝑖=𝑣𝑖−𝑢𝑖 𝑣𝑖 u𝑖 𝑣𝑖 𝑢𝑖 

 Distribution Normal Log-Normal Normal Lindley 

n Estimators Bias MSE Bias MSE 

100 

MLEHalf-Normal 0.193 0.240 0.226 0.601 

MLEExponential -0.045 0.176 -0.502 0.361 

MLELindley 2.034 0.187 -0.087 0.360 

250 

MLEHalf-Normal 0.116 0.197 -0.037 0.362 

MLEExponential 0.054 0.147 0.094 0.176 

MLELindley 0.116 0.155 0.040 0.168 

500 

MLEHalf-Normal -0.011 0.141 0.207 0.129 

MLEExponential 0.193 0.050 0.069 0.105 

MLELindley 0.126 0.041 0.032 0.100 

750 

MLEHalf-Normal 0.001 0.038 -0.039 0.087 

MLEExponential -0.324 0.017 -0.039 0.023 

MLELindley 0.003 0.016 -0.043 0.012 

Table 3 shows that for the Log-Normal error distribution, MLEExponential tends to outperform 

MLEHalf-Normal and MLELindley, especially in smaller sample sizes (n = 100 and n = 250). The 

MLEExponential achieves the lowest MSE (0.017) in the largest sample size (n = 750), indicating 

its robustness in modeling Log-Normal errors. When the error term follows the Lindley 

distribution, MLELindley is the most effective estimator, achieving the lowest MSE values across 

all sample sizes. This is especially evident in larger samples (n = 500 and n = 750), where 

MLELindley outperforms both MLEHalf-Normal and MLEExponential. This confirms the model's 

superiority when the error structure aligns with the Lindley distribution. 

5. Conclusion 

The Stochastic Frontier Analysis (SFA) remains a vital methodology for assessing technical 

efficiency. This study advances the classical SFA framework by introducing the Lindley 

Stochastic Frontier Model (L-SFA), which incorporates the Lindley error distribution to 

enhance flexibility and performance in efficiency estimation. Through a comprehensive 

simulation study, the effectiveness of different Maximum Likelihood Estimators (MLEs) under 

various error distributions was examined. 

Across all models and distributions, the accuracy and reliability of the estimators improve with 

increasing sample sizes, as evidenced by the decreasing Mean Squared Error (MSE) values. 

This trend highlights the benefit of larger datasets in obtaining precise efficiency estimates, 

particularly for practitioners utilizing the L-SFA model. The ability of MLELindley to produce 

more reliable results with larger samples is especially beneficial, confirming that the L-SFA 

model is well-suited for extensive datasets, thereby enhancing the robustness and precision of 

the efficiency estimates as more data becomes available. 

The MLELindley demonstrates considerable robustness and competitive performance across 

various error distributions, not just under its native Lindley distribution. While it excels when 

the true error distribution aligns with the Lindley form, MLELindley also provides relatively low 

bias and MSE under Exponential and Weibull distributions. This versatility suggests that the 

L-SFA model can be effectively applied in diverse contexts where the underlying error 
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structure is complex, uncertain, or varies across firms or industries. Such adaptability reduces 

the need for overly restrictive assumptions about the error distribution, thereby broadening the 

model's applicability in practical settings. 

The simulation results underscore the importance of selecting the appropriate estimator based 

on the assumed or known error distribution. When comparing the performance of MLELindley 

with other estimators, such as MLEHalf-Normal and MLEExponential, MLELindley shows superior 

performance in scenarios where the true error distribution closely aligns with the Lindley or 

Exponential forms. This superior performance is reflected in lower MSE values and reduced 

bias, making MLELindley a preferred choice for efficiency analysts seeking to minimize 

estimation error. The study’s results also suggest that MLELindley could serve as a flexible and 

effective alternative in situations where the true error structure is complex or not well-defined, 

enhancing the robustness of efficiency estimates across varying distributional assumptions. 

The introduction of the Lindley error distribution within the SFA framework, as evidenced by 

the L-SFA model, represents a significant advancement in efficiency analysis. For practitioners 

and researchers, adopting a flexible model like L-SFA with the Lindley distribution offers more 

reliable and accurate estimates, especially in complex empirical settings. The model's 

demonstrated accuracy under the Lindley distribution assumption makes it a valuable tool for 

econometric modeling across various fields, including economics, operations research, and 

management science. 

The integration of the Lindley error distribution within the SFA framework, as demonstrated 

by the L-SFA model, provides a robust and flexible alternative to traditional SFA models. The 

ability of the L-SFA model to maintain strong performance across different distributional 

assumptions further establishes its utility in diverse empirical contexts. Future research could 

extend this work by exploring the application of L-SFA in panel data settings, integrating it 

with other stochastic modeling techniques, or applying it to real-world datasets to further 

enhance its utility and applicability in complex empirical contexts.  
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