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Abstract

Stochastic Frontier Analysis plays a crucial role in assessing technical efficiency and modelling
production processes across various disciplines. Traditionally, SFA assumes specific error
distributions, such as the normal distribution for random effects and the half-normal
distribution for technical efficiency. However, the choice of error distributions can significantly
impact model estimation and interpretation. This study proposes a novel approach by
incorporating the Lindley distribution as a flexible error distribution in SFA, termed Lindley
Stochastic Frontier Analysis (L-SFA). This extension offers a more detailed representation of
the error structure, potentially enhancing the accuracy of efficiency estimates. The derivation
and solution of maximum likelihood estimators for the theoretical foundations of L-SFA are
provided. Furthermore, a simulation study demonstrates the advantages of L-SFA over
traditional SFA. The findings underscore the importance of flexible error distributions in
capturing the complexities of production processes with this new SFA extension.

Keywords: Efficiency, Error distribution, Lindley stochastic frontier analysis, Maximum
likelihood estimation, Simulation

1. Introduction

For benchmarking, two dominant methods are Data Envelopment Analysis (DEA) and
Stochastic Frontier Model (SFM). DEA is non-parametric, while SFM is a parametric method.
In the parametric approach, the production function has a specific functional form with
unknown parameters, as represented in Eq. 1:

fx) =10 p) (1)

For vi €R and u; €R", additional forms are obtained and represented as follows:
fx)=fC;B)+v (1.8)
f)=f(x;pB)—u (1.b)

f=fp+v—u (1.c)
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These forms correspond to the regression, deterministic, and stochastic models, respectively.
In this study, we focus on SFM, represented by equation (1.c). SFM was introduced by Aigner,
Lovell, and Schmidt in 1977, and independently proposed by Meeusen and van den Broeck
(1977). SFM is used to estimate technical efficiency and model production (Battese and Coelli,
1992). The model includes an error term with two components, as represented in Eq. 2:

E =V —U; (2)

where v; and u; represent noise and inefficiency, respectively. It is assumed that vi~N(0, 0+2)
and ui~|N (0, d.?)|. In this study, it is assumed that v; is distributed as the Lindley distribution
(LD), resulting in a more flexible model for SFM. Moreover, the relationship between the
Lindley distribution and other distributions commonly used in the literature (such as
exponential and gamma) provides significant motivation for exploring LD in the context of
SFM.

In the literature, half-normal and exponential distributions have been employed by Aigner et
al. (1977) for modeling u;, and these models are frequently utilized for efficiency analysis.
Models using half-normal and exponential distributions for the one-sided error (u;) represent
inefficiency, while the two-sided error (v;) representing noise follows a normal distribution.
There are numerous studies that focus on the distribution of w;, including truncated-normal
(Stevenson, 1980), gamma (Greene, 1990), binomial (Carree, 2002), Weibull (Tsionas, 2007),
mixture (Kumbhakar et al., 2013), and double truncated normal (Almanidis et al., 2014)
distributions. These studies generally assume that the two-sided error (v;) is normally
distributed. However, the Laplace distribution has also been used in SFM for the two-sided
error (Horrace and Parmeter, 2014).

In this study, we propose that the two-sided error (v;) representing noise is normally
distributed, while the one-sided error (u;) representing inefficiency follows a one-parameter
Lindley distribution. This leads to the introduction of the Lindley-Stochastic Frontier Model
(L-SFM) as an alternative approach for efficiency measurement. In this context, the second
section briefly discusses the one-parameter Lindley distribution, introduces the L-SFM based
on LD, and outlines its estimation methods. In the third section, the estimators commonly used
in the literature are compared with the proposed estimator through a simulation study. Finally,
the findings are presented in the results section.

2. Literature

The stochastic frontier model (SFM) has evolved as a critical tool in econometrics for analysing
technical efficiency across various sectors. The foundational work by Aigner, Lovell, and
Schmidt (1977) laid the groundwork by formulating and estimating stochastic frontier
production function models. This approach was pivotal in introducing the concept of a
composed error term, where one component captures inefficiency while the other captures
random noise. Meeusen and van den Broeck (1977) further contributed to this field by applying
the stochastic frontier approach to the Cobb-Douglas production function. Their work
emphasized efficiency estimation in the presence of composed error terms, reinforcing the
robustness of SFMs in economic research. Subsequent research has expanded on these initial
models. Battese and Coelli (1992) introduced panel data into the stochastic frontier framework,
allowing for more dynamic analysis of technical efficiency over time, particularly in
agricultural settings. This was a significant advancement, enabling the study of efficiency in
the context of longitudinal data.
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Stevenson (1980) and Greene (1990) both contributed to the generalization of the stochastic
frontier model by exploring different distributions for the inefficiency term. Stevenson focused
on likelihood functions for generalized stochastic frontier estimation, while Greene proposed
a gamma-distributed inefficiency component, offering more flexibility in modelling. Further
innovations include Carree's (2002) investigation into the technological inefficiency and the
skewness of the error component in SFM, and Tsionas' (2007) application of the Weibull
distribution in efficiency measurement. These studies highlight the ongoing refinement of the
SFM to better capture the complexities of inefficiency in various economic contexts.

The development of the zero-inefficiency stochastic frontier model by Kumbhakar, Parmeter,
and Tsionas (2013) represents another significant advancement, allowing for the possibility
that some firms operate on the frontier with no inefficiency. Almanidis, Qian, and Sickles
(2014) extended this by introducing bounded inefficiency in SFM, which provides a more
realistic approach by setting a lower bound on inefficiency.

Recent studies continue to explore the frontiers of efficiency analysis using SFM. Makieta and
Mazur (2022) examined model uncertainty and its implications for efficiency measurement,
addressing the challenges posed by generalized error distributions. The applications of SFM in
specific contexts, such as the assessment of technical efficiency in Turkish banks (Kantar &
Yenilmez, 2017) and universities (Yenilmez et al., 2022; Yenilmez, 2024), demonstrate the
versatility and adaptability of SFM in different economic environments.

3. An Alternative for Stochastic Frontier Analysis

This study represents the first known instance of employing the Lindley distribution (LD) to
model the one-sided error component in Stochastic Frontier Analysis (SFA). The LD's
relationship with other distributions commonly used in SFA makes it a compelling alternative.
Accordingly, the Lindley distribution is introduced, and the SFA model based on LD is derived.

3.1. Lindley Distribution

The Lindley distribution is used to model u;. The probability density function (PDF) £,,(.) and
cumulative density function (CDF) E,(.) of the random variable uuu with parameter www are
given as follows:

f(u;w)=%(1+u)e"wu u>0 w>0 3)

e Wi(1+w+w?)
1+w

Flu;w)=1- u>0 w>0 4)

Figure 1 illustrates the PDF of the Lindley distribution for selected values of w.
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Figure 1: The PDF of the LD for selected values of w
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3.2. Lindley Stochastic Frontier Model and Estimation

To estimate the unknown parameters in a Stochastic Frontier Model (SFM), the Maximum
Likelihood Estimation (MLE) procedure can be employed. For this, the probability density
function (PDF) of the combined error term must be known. In the seminal study by Aigner et
al. (1977), the error components v and u are assumed to follow normal and half-normal
distributions, respectively. Aigner et al. (1977) addressed the distribution of ; = v; — u; and
derived the log-likelihood function for the likelihood estimation procedure.

In this study, it is assumed that vi~N(0, ¢+?) and ui~Lindley(w). Under these assumptions, the

probability density function (PDF) of the combined error term &= ti=vi—w; is derived as
follows:

fi® =" foulu=v—tv)du=[" f,,(wv=t+uwdu ()

It is assumed that the random variables v and u are independent. Therefore, the joint PDF is
(t+w)?

found as: f,,(v,u) = f,()f,(w). vi~N(O, 6+°) = N(O, s?) and f,(v) = S\/%e_ 252

u~Lindley(w) and f,,(w) = % (1 4+ w)e ™. If the problem, initially solved as an indefinite

integral up to this stage, is now evaluated using specific boundaries as a definite integral, the
solution will take the following form:

SZW2
__wPe 2 tw (\/Eerf (\/Eszwh/ft) n I_,(l s4w2+252tw+t2) SZW)
2VT(w+1) 2s 2’ 252
2,2
wzes 7w 1 s*w?+2s%tw+t? \/— stw?+2s2tw+t?
ey Lo )tV (L )s—vr)

where I'(a, B) is upper incomplete gamma functions and it is assumed thats?w + ¢t > 0s > 0.

To use Maximum Likelihood Estimation (MLE) in Stochastic Frontier Analysis (SFA), the

likelihood function L = f(tq,t,,...,t,) = [1j=, f(t;) must be determined. The first step in this
process is to find the logarithm of the density function of t; (log f (t)).
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SZW2
_ w2Ze 2z TV V2s2w+y2t 1 s*w24252tw+t?
log f (t) = log (— N (\/ﬁ erf (—25 ) +T (5,—252 )s W) +...
SZW2
w2e z TtV 1 s*w?+2s52tw+t? stw2+2s2tw+t2
T ovmw1) (F (E’ 252 ) t—var (1’ 252 ) 5~ \/E) 7

The log of the joint density function, also known as the log-likelihood, is expressed as:

lOgL = lng (tlﬂtZ""'tn) = ?:1 lng (ti) (8)

After taking the partial derivatives of the log L function with respect to the parameters of
interest, the likelihood equations are obtained.

4. Analysis and Results

A simulation study is conducted to compare the relative bias and Mean Squared Error (MSE)
of Maximum Likelihood Estimates (MLEs) under different distributions. The simulation of the
Stochastic Frontier Model (SFM) for cross-sectional data of firms is based on production
functions. Given the advantages of linear transformation in econometric models, both Cobb-
Douglas and trans-log production functions are utilized. The Cobb-Douglas production
function and the trans-log production function are presented in equations (30) and (31),
respective.

log(y;) = Bo + Z?=1 Bjxije 9)
log(y;) = Bo + X7=1Bjxij + Xk=1BjkXijeXikt (10)

In this context, the Cobb-Douglas production function is utilized due to its ease of
implementation and interpretation. The parameters of the Cobb-Douglas production frontier
are estimated using the following equation:

log(y;) = Bo + P1log(x;) + & fori=12,..,n (12)
where E =V —U;.
In the simulation procedure, 1,000 datasets are generated, with sample sizes of 100, 250, 500,
and 750. The error term v; is assumed to follow a normal distribution, while u; is distributed

as half-normal, exponential, gamma, Weibull, log-normal, and Lindley distributions. The
formulas for bias and Mean Squared Error (MSE) are presented as follows:

. ~ 1 ~
Bias(9) = (=210 9:) - ¥ (12)
MSE($) = (= X1090(9; — y)? 13
) = (gg02i=1 Fi —¥) (13)

The simulation results are presented in Tables 1-3. Table 1 indicates that for the Half-Normal
error distribution, the MLE based on the Half-Normal distribution (MLEHait-Normal) generally
exhibits lower bias and MSE values as the sample size increases. This is particularly evident
in larger samples (n = 500 and n = 750), where the MLEHait-normai achieves the lowest MSE
(0.003) compared to MLEexponential and MLELingley. Under the Exponential error distribution,
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the MLE based on the Exponential distribution (MLEgxponentia) consistently shows lower MSE
values across all sample sizes compared t0 MLEwait-Normai and MLEdLindiey. This trend is
particularly strong for larger sample sizes (n = 500 and n = 750), where MLEgxponential achieves
the lowest MSE (0.020) and relatively low bias. The MLELindiey, While performing reasonably
well under the Exponential distribution for larger sample sizes, shows higher MSE values under
the Half-Normal error distribution, indicating its reduced effectiveness when the error term
does not align with the Lindley distribution.

Table 2 reveals that for the Gamma error distribution, the results show that MLERaif-normal and
MULEEgxponential tend to have lower bias and MSE in smaller sample sizes (n = 100 and n = 250).
However, as the sample size increases to n = 500 and n = 750, MLEEgxponential performs slightly
better in terms of MSE. Under the Weibull error distribution, MLE_indley demonstrates strong
performance with lower MSE values, particularly in larger samples (n = 500 and n = 750). This
suggests that the Lindley distribution's shape flexibility may offer advantages in capturing the
distributional characteristics of the Weibull error term.

Table 1: Simulation results for estimators under Half-Normal and Exponential error distributions for

2w
&= t=vi—w Vi Ui Vi Ui

Distribution Normal Half-Normal Normal Exponential
n Estimators Bias MSE Bias MSE
MLEHait-Normal 0.074 0.083 0.895 0.272
100 ML Egxponential 0.190 0.080 0.078 0.332
MLE Lindiey 1.532 0.217 -0.077 0.230
MLEHait-Normal 0.145 0.017 -0.121 0.073
250 ML Egxponential 0.014 0.027 -0.017 0.069
MLE Lindiey 0.446 0.178 0.710 0.065
MLEait-Normal 0.296 0.010 0.032 0.050
500 ML Egxponential 0.033 0.010 -0.090 0.045
MLE Lindiey 0.835 0.151 0.875 0.058
MLEait-Normal 0.191 0.003 -0.015 0.025
750 ML Egxponential 0.008 0.004 -0.004 0.020
MLELindiey 1.560 0.058 0.741 0.030

Table 2: Simulation results for estimators under Gamma and Weibull error distributions for z;

&= t=vi—w v Ui Vi Ui

Distribution Normal Gamma Normal Weibull
n Estimators Bias MSE Bias MSE
ML EHaif-Normal -0.413 0.253 -0.353 0.140
100 ML Egexponential -0.323 0.224 -0.175 0.140
MLE indley 1.834 0.719 0.589 0.253
ML EHaif-Normal 0.452 0.089 0.096 0.076
250 ML Egexponential 0.071 0.083 -0.002 0.069
MLE indley 0.791 0.327 0.942 0.065
ML EHaif-Normal 0.070 0.058 0.014 0.059
500 MLEE&xponential 0.117 0.054 0.040 0.055
MLE indley 1.065 0.043 0.975 0.050
750 MLEHaif-Normal -0.033 0.034 -0.049 0.032
MLEExponential -0.030 0.034 -0.031 0.032
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| | MLE Lindtey | o7s1 | o020 | 1118 | 0024 |
Table 3: Simulation results for estimators under Log-Normal and Lindley error distributions for z;
&= t=vi—w vi Ui Vi Ui

Distribution Normal Log-Normal Normal Lindley
n Estimators Bias MSE Bias MSE
MLEHaif-Normal 0.193 0.240 0.226 0.601
100 ML Eexponential -0.045 0.176 -0.502 0.361
MLE indiey 2.034 0.187 -0.087 0.360
MLEHaif-Normal 0.116 0.197 -0.037 0.362
250 ML Eexponential 0.054 0.147 0.094 0.176
MLE indiey 0.116 0.155 0.040 0.168
MLEHaif-Normal -0.011 0.141 0.207 0.129
500 ML Egxponential 0.193 0.050 0.069 0.105
MLE indiey 0.126 0.041 0.032 0.100
MLEHaif-Normal 0.001 0.038 -0.039 0.087
750 ML EExponential -0.324 0.017 -0.039 0.023
MLE Lindiey 0.003 0.016 -0.043 0.012

Table 3 shows that for the Log-Normal error distribution, MLEgxponentiar tends to outperform
MLEHaif-Normai and MLELindiey, €specially in smaller sample sizes (n = 100 and n = 250). The
MLEEgxponential achieves the lowest MSE (0.017) in the largest sample size (n = 750), indicating
its robustness in modeling Log-Normal errors. When the error term follows the Lindley
distribution, MLELindiey iS the most effective estimator, achieving the lowest MSE values across
all sample sizes. This is especially evident in larger samples (n = 500 and n = 750), where
MLELindley outperforms both MLEHaif.Normai @hd MLEEgxponential. This confirms the model's
superiority when the error structure aligns with the Lindley distribution.

5. Conclusion

The Stochastic Frontier Analysis (SFA) remains a vital methodology for assessing technical
efficiency. This study advances the classical SFA framework by introducing the Lindley
Stochastic Frontier Model (L-SFA), which incorporates the Lindley error distribution to
enhance flexibility and performance in efficiency estimation. Through a comprehensive
simulation study, the effectiveness of different Maximum Likelihood Estimators (MLES) under
various error distributions was examined.

Across all models and distributions, the accuracy and reliability of the estimators improve with
increasing sample sizes, as evidenced by the decreasing Mean Squared Error (MSE) values.
This trend highlights the benefit of larger datasets in obtaining precise efficiency estimates,
particularly for practitioners utilizing the L-SFA model. The ability of MLE_indgiey to produce
more reliable results with larger samples is especially beneficial, confirming that the L-SFA
model is well-suited for extensive datasets, thereby enhancing the robustness and precision of
the efficiency estimates as more data becomes available.

The MLELingiey demonstrates considerable robustness and competitive performance across
various error distributions, not just under its native Lindley distribution. While it excels when
the true error distribution aligns with the Lindley form, MLELindiey also provides relatively low
bias and MSE under Exponential and Weibull distributions. This versatility suggests that the
L-SFA model can be effectively applied in diverse contexts where the underlying error
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structure is complex, uncertain, or varies across firms or industries. Such adaptability reduces
the need for overly restrictive assumptions about the error distribution, thereby broadening the
model's applicability in practical settings.

The simulation results underscore the importance of selecting the appropriate estimator based
on the assumed or known error distribution. When comparing the performance of MLEdLindiey
with other estimators, such as MLEwait-normai @nd MLEgxponential, MLELindley ShOws superior
performance in scenarios where the true error distribution closely aligns with the Lindley or
Exponential forms. This superior performance is reflected in lower MSE values and reduced
bias, making MLEvringey a preferred choice for efficiency analysts seeking to minimize
estimation error. The study’s results also suggest that MLELingley could serve as a flexible and
effective alternative in situations where the true error structure is complex or not well-defined,
enhancing the robustness of efficiency estimates across varying distributional assumptions.

The introduction of the Lindley error distribution within the SFA framework, as evidenced by
the L-SFA model, represents a significant advancement in efficiency analysis. For practitioners
and researchers, adopting a flexible model like L-SFA with the Lindley distribution offers more
reliable and accurate estimates, especially in complex empirical settings. The model's
demonstrated accuracy under the Lindley distribution assumption makes it a valuable tool for
econometric modeling across various fields, including economics, operations research, and
management science.

The integration of the Lindley error distribution within the SFA framework, as demonstrated
by the L-SFA model, provides a robust and flexible alternative to traditional SFA models. The
ability of the L-SFA model to maintain strong performance across different distributional
assumptions further establishes its utility in diverse empirical contexts. Future research could
extend this work by exploring the application of L-SFA in panel data settings, integrating it
with other stochastic modeling techniques, or applying it to real-world datasets to further
enhance its utility and applicability in complex empirical contexts.
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