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Abstract 

Online portfolio selection (OLPS) is a critical issue in computational finance. It sequentially 

updates portfolio allocations across multiple investment periods as new information becomes 

available. The main objective of OLPS is to maximize the final cumulative return, typically 

achieved through asset price prediction and portfolio optimization steps in each investment 

period. The properties of financial data, such as non-linearity, make certain machine learning 

methods applicable to the problem with potential benefits. To explore the effectiveness of 

integrating machine learning methods on OLPS, this work employs two machine learning 

models, the Long Short-Term Memory Networks (LSTM) and Extreme Gradient Boosting 

(XGBoost), on the asset price forecasting stage. These models are integrated with three 

optimization models: Mean-Variance, Max-Return, and On-Line Moving Average Reversion 

(OLMAR) to facilitate the decision-making process. For comparison purpose, a traditional 

price forecasting approach, the Exponential Moving Average (EMA) model, is utilized with 

the same optimization models as control groups. Numerical experiments are conducted using 

three commonly used public datasets, and the performance of the OLPS models is evaluated in 

terms of both final cumulative wealth and risk-adjusted return. The results indicate the 

advantages of incorporating machine learning models in various circumstances. Among the 

nine OLPS models, LSTM-based models outperform others in most scenarios. However, the 

effectiveness of XGBoost-based models varies depending on the optimization models and 

datasets used. 

Keywords: Online Portfolio Selection, Machine Learning, LSTM, XGBoost, Exponential 

Moving Average (EMA) 
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1. Introduction 

Online portfolio selection (OLPS) is a primary issue in computational finance, and research 

of it has extended to other areas such as statistics and artificial intelligence (Li and Hoi, 2014). 

OLPS determines the optimal portfolio allocations over multiple investment periods 

sequentially (Li & Hoi, 2015). Before making each investment decision using the optimization 

algorithm, accurately forecasting asset values to estimate future returns is an essential step. 

Capturing price patterns and numerically combining price trends are two widely developed 

approaches in the prediction stage of OLPS (Xi et al., 2023). However, due to the elaborate 

and non-linear property of financial data, traditional methods are not sufficient for financial 

analysis (Dai et al., 2024). This work aims to explore the potential benefits of integrating 

machine learning techniques into the prediction stage of OLPS strategies. 

The Long Short-Term Memory Networks (LSTM) (Schmidhuber & Hochreiter, 1997) and 

Extreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016) from two categories of 

machine learning models are selected for asset price anticipating. LSTM is a specialized 

Recurrent Neural Network (RNN), which effectively processes sequential data, such as time 

series data (Graves, 2012). However, standard RNN has limitations on long-term dependencies 

due to the vanishing gradient problem (Bengio et al., 1994). The architecture of LSTM is 

designed to deal with the issue (Miao et al., 2015), making it suitable for forecasting financial 

time series (Martelo et al., 2022). XGBoost is built on gradient boosted regression tree, whose 

mechanism is integrating weak information to recognize complex patterns and relations that 

are difficult for linear algorithms to detect (Moghar & Hamiche, 2020). With the improvement 

in both speed and performance (Hongjoong, 2021), XGBoost is more applicable to practical 

problems. As noted by Chen (2023), XGBoost excels in predicting stock prices due to its 

sophisticated handling of complex data relationships and its high predictive accuracy. To better 

understand the effectiveness of these two machine learning models, we apply the traditional 

Exponential Moving Average (EMA) (Li & Hoi, 2015) used in OLPS literature as a comparison 

method. Three optimization models: Mean-Variance (Markowitz, 1952), Max-Return, and On-

Line Moving Average Reversion (Li & Hoi, 2012) are integrated for the second stage of OLPS. 

The remainder of the work is structured as follows. In Section 2, we present the problem 

formulation based on several assumptions. Then, we explore the structures of three prediction 

models for OLPS in Section 3. In Section 4, we present three optimization models and the 

merging of a prediction model with an optimization model. Section 5 displays the settings of 

numerical experiments and the corresponding results. Ultimately, we conclude the work in 

Section 6. 

2. Problem formulation 

This section expounds the decision-making framework of OLPS, representing a classical 

example of sequential optimization. The assumptions following some literature (Li et al., 2015) 

are made to simplify the analysis of developing and evaluating the machine learning models 

for OLPS. First, no transaction costs or taxes are incurred while trading. Second, assets can be 

bought or sold in any quantity at the closing price. Third, the implementation of portfolio 

selection strategies does not affect the market behavior and other assets’ prices. We 

acknowledge that these aspects may have an impact on practical applications (Li et al., 2015). 

Considering an investor plans to invest in n different assets over T periods, where the first 

K  periods data is treated as historical data and the investment behavior starts from the 1K   

period. The historical closing price over period t  is denoted as 𝒑𝒕 = (𝑝𝑡1, 𝑝𝑡2, … , 𝑝𝑡𝑛)⊤, where 

tip  is the closing price of asset i at period t, for 1,2, ,i n  and 1,2, ,t T . The price 
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relative vector for all assets in period t is denoted as 𝒓𝑡 = (𝑟𝑡1, 𝑟𝑡2, … , 𝑟𝑡𝑛)⊤, where 
( 1)

ti
ti

t i

p
r

p 

  

for 2, ,t T  and 1 1ir  . The asset return vector in period t  is 𝒚𝑡 = (𝑦𝑡1, 𝑦𝑡2, … , 𝑦𝑡𝑛)⊤ , 

where 1ti tiy r  . The predicted price vector, predicted price relative vector, and predicted 

return vector at period t  is denoted by 𝒑̂𝑡, 𝒓̂𝑡, 𝒚̂𝑡 ∈ ℝ𝑛×1 , respectively. Based on the latest 

information, at the beginning of each period, the investor decides on an investment 

strategy 𝒙𝑡 ∈ ℝ𝑛×1, where tix  denotes the fraction of capital allocated to asset i at period t. 

Given the initial wealth at the end of period K , KW , the final cumulative wealth by the end of 

period T is given by Eq. (1). 

 𝑊𝑇 = 𝑊𝐾 ∏ 𝒓𝑡
⊤𝒙𝑡

𝑇
𝑡=𝐾+1 . (1) 

3. Prediction models 

This section is devoted to explaining how to apply the three models EMA, LSTM, and 

XGBoost to the stock price prediction part of OLPS in three subsections, respectively. Note 

that since the price is predicted for each asset individually, we simplify the notation in this 

section by omitting i , e.g. we use tp  instead of tip . For a fair comparison, all three models 

use the same latest K  historical price 1 2[ , , , ]h t K t K tp p p    p  to predict 1
ˆ

tp  . 

3.1  EMA model 

As a variation of the Weighted Moving Average (WMA), the EMA model employs all 

historical data, with more recent data having a higher weight. It is commonly used in time series 

forecasting, particularly in financial markets for tracking stock prices and trading volumes 

(Singla & Malik, 2016). The predicted price at time 𝑡+1 can be calculated by the Model (2). 

 

1 1

1

,

(1 ) ,

for 2,3, , .

t K

k t K k k

EMA p

EMA p EMA

k K

 

 

  



    



 (2) 

Here,   is the smoothing factor ranging from 0 to 1, which is set as 
2

1K
 


. Then 

1
ˆ

t Kp EMA  . 

3.2  LSTM model 

The LSTM network consists of a series of LSTM blocks, whose input includes the output 

(information) of the previous block. The number of blocks depends on the time step size of 

training data. The framework of one LSTM block is demonstrated in Figure 1. 
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Figure 1: One LSTM block Framework (Wang et al., 2021) 

Given the training dataset hp  and time step size  , we first generate new training data 

 1 1, , ,xLSTM t K t K t      p p p p  and  1 2, , ,yLSTM t K t K t      p p p p , where 

1 2[ , , , ]k k k kp p p    p  for , 1, ,k t K t K t       . Let batch size equal 1 , the 

LSTM model is trained iteratively by ( , )xLSTM yLSTMp p .  The LSTM block dealing with kp  

comprises cell state kc  together with three gates: the forget gate kf , the input gate ki , and the 

output gate ko , then the block output and hidden state represented by kh  can be obtained with 

ko  and kc  (Farzad et al., 2019). At time k , the gates and states are computed by the following 

equations: 

1 2 1

1 2 1

1 2 1

1 2 1

1
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,
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  


  

   


  
  




 

where ( )   and tanh( )  represent the sigmoid and hyperbolic tangent functions, respectively, 

the operator ⊙ is the element-wise product. Let * { , , , }i f o c  and d  be the hidden size, then 

𝑊∗1 ∈ ℝ𝑑×1 and 𝑊∗2 ∈ ℝ𝑑×𝑑 are weight matrices, and 𝑏∗ ∈ ℝ𝑑×1 are bias vectors. They can 

be trained by adopting the Mean Squared Error (MSE) loss function calculated by Eq. (3). 

 

2

1

ˆ( )

.

k

j j

j k

p p

MSE




  






 (3) 

3.3  XGBoost model 

Besides closing price, using XGBoost for prediction needs more features. The widely used 

technical analysis indicators, Relative Strength Index (RSI) (Ţăran-Moroşan, 2011), EMA over 
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a period of 9 (EMA9), Moving Average Convergence and Divergence (MACD) (Appel, 2005), 

and MACDdiff (the difference between MACD and MACD signal (Appel, 2005)) are 

calculated as additional training features. Provided hp  and window size of RSI RSI , we first 

generate 𝒎𝑘 = (𝑝𝑘, 𝑅𝑆𝐼𝑘, 𝐸𝑀𝐴9𝑘, 𝑀𝐴𝐶𝐷𝑘, 𝑀𝐴𝐶𝐷𝑑𝑖𝑓𝑓𝑘)⊤ , for 1, 2, ,k t l t l t     . 

Note that 1RSIl K     since the first 1RSI   terms of 𝑅𝑆𝐼 are not applicable. Then we train 

XGBoost model with regenerated training dataset ( , )yXGBoostM p , where 

1 2 1{ , , , }t l t l tM      m m m , and 2 3[ , , , ]yXGBoost t l t l tp p p   p . The model prediction of 

1
ˆ

kp   can be given by Eq. (4): 

 1

1

ˆ ( ),
D

k d k

d

p g



 m  (4) 

where g  is a tree in the space of regression trees and D  is the number of trees.  

During the training process, the objective function to be minimized is defined as Eq. (5): 

 
1

1 1

1 1

ˆObj( ) ( , ) ( ),
t D

k k d

k t l d

L p p g


 

   

      (5) 

where   denotes the model parameters, ( )L   is the loss function assessing the model's 

prediction accuracy on training data, and ( )   as expressed in Eq. (6) represents the 

regularization term that controls model complexity to prevent over-fitting. 

 2

1

1
( ) ,

2

N

j

j

g N u 


     (6) 

where N  is the number of tree leaves, 𝒖 ∈ ℝ𝑁is the vector of leaf weights,   is the penalty on 

the number of leaves, and   is the 2L  regularization coefficients. 

Instead of learning parameters of all trees at once, it adds the newly learned tree to the 

already learned ones. The predicted value after generating d-th tree can be expressed as 
( ) ( 1)

1 1
ˆ ˆ ( )d d

k k d kp p g

   m , note that 
(0)

1
ˆ 0kp   . Choosing squared error as the loss function ( )L  , 

the objective function at step d  can be expressed as follows:  

 
1

( ) ( 1) 2

1 1

1 1

ˆObj [ ( ( ))] ( ).
t d

d d

k k d k j

k t l j

p p g g




 

   

     m  (7) 

Applying the second-order Taylor expansion for the loss and removing all constants, the 

parameters at step d  are updated by minimizing Eq. (8). 

 
1

2

1

1
[ ( ) ( )] ( ),

2

t

k d k k d k d

k t l

g g g


  

    m m  (8) 

where ( 1)
1

( 1)

1 1ˆ
ˆ( , )d

k

d

k k kp
L p p





     and ( 1)
1

2 ( 1)

1 1ˆ
ˆ( , )d

k

d

k k kp
L p p





    .   

4. Online portfolio selection frameworks 

In this section, we first introduce the application of three optimization models Mean-

Variance, Max-Return, and On-Line Moving Average Reversion for updating portfolios in a 
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specific period 1t   of OLPS. Then we demonstrate how to integrate the prediction models 

with the optimization models in OLPS.  

4.1  Mean-Variance model 

The Mean-Variance (MV) model generates an efficient frontier to consider the trade-off 

between maximizing returns and minimizing risks (Hongjoong, 2021). Here, to decide the 

portfolio allocation of time 1t  , we apply Model (9) to maximize a quadratic function of 

expected return with a penalty on the stock variance (risk).  

 max
𝒙

  𝒙𝑇𝒚̂𝑡+1 −
δ

2
𝒙𝑇ν𝑡+1𝒙, 

                                                  s.t.     𝒙𝑇𝟏 = 1,                                                                        (9) 

                                                           𝒙 ≥ 𝟎,                                                              

where ν𝑡+1 ∈ ℝ 𝑛×𝑛 is the asset return covariance matrix at time 1t  , calculated based on the 

past 251 return data,   is the risk-aversion parameter, and 𝟏 ∈ ℝ𝑛×1 is the column vector of 

all ones.  

4.2  Max-Return model 

The Max-Return model (MaxRet) with the risk-aversion parameter of Model (9) set to 0 is 

available for investors considering only the maximum expected return. It can be obtained by 

solving Model (10). 

 max
𝒙

  𝒙𝑇𝒚̂𝑡+1,  

                                                            s.t.      𝒙𝑇𝟏 =
1,                                                               (10) 

                                                                      𝒙 ≥ 𝟎. 

4.3  OLMAR 

Empirical studies indicate that the mean reversion trading principle, arguing that the stocks' 

performance will reverse in the future, is suitable for the markets (Li et al., 2013). As a 

multiple-period mean reversion, On-Line Moving Average Reversion (OLMAR) approach 

propounded by Li and Hoi (2012), is designed for online portfolio selection with the sequential 

nature. The fundamental idea for its optimization part, as formulated in Model (11), is 

maximizing expected return while maintaining or making minimal adjustments to the original 

asset allocation.  

 min
𝒙

  
1

2
‖𝒙 − 𝒙𝑡‖2, 

s.t.    𝒙𝑇𝒓̂𝑡+1 ≥ ϵ, 

                                                                          𝒙𝑇𝟏 =
1,                                                                     (11) 

                                                                 𝒙 ≥ 𝟎, 

where ϵ is a threshold. The algorithm of the portfolio updating process refers to (Li and Hoi, 

2012). 
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4.4  Integration of prediction and optimization models 

Once the latest information (price) 𝒑𝑡 is obtained, 𝒑̂𝑡+1can be predicted with the prediction 

models mentioned in Section 3. The predicted price relative vector 𝒓̂𝑡+1 and predicted return 

vector 𝒚̂𝑡+1can be calculated, correspondingly. Then the portfolio allocation strategy 𝒙𝑡+1 is 

determined by optimization models. The whole procedure for updating the portfolio of OLPS 

is shown in Algorithm 1. 

 

Input: Historical prices of all 𝑛 assets; Parameters of specific prediction and optimization 

models; Training data size, 𝐾. 

Output: Final cumulative wealth, 𝑊𝑇. 

Initialize: Investment strategy, 𝒙𝐾; Original wealth, 𝑊𝐾. 

For , 1, , 1t K K T     do 

 Provide the latest K  historical price of each asset 𝑖, 𝒑ℎ,𝑖 = [𝑝𝑡−𝐾+1,𝑖, 𝑝𝑡−𝐾+2,𝑖, … , 𝑝𝑡,𝑖]. 

Train a prediction model and then predict the price of next period,  𝑝̂𝑡+1,𝑖 for each  

asset 𝑖 (EMA model skips the training process). 

Generate the price vector of the next period, 𝒑̂𝑡+1. 

Calculate predicted price relative vector, 𝒓̂𝑡+1 =
𝒑̂𝑡+1

𝒑𝑡
. 

Calculate predicted return vector, 𝒚̂𝑡+1 =
𝒑̂𝑡+1

𝒑𝑡
− 1. 

Update portfolio allocation vector by the particular optimization model, 𝒙𝑡+1. 

Calculate price relative vector, 𝒓𝑡+1 =
𝒑𝑡+1

𝒑𝑡
. 

Update cumulative wealth, 𝑊𝑡+1 = 𝑊𝑡𝒓𝑡+1
⊤ 𝒙𝑡+1 

end 

Algorithm 1: Integration of prediction and optimization models for OLPS. 

5. Numerical experiments 

This section details numerical experiments of 9 combination models on 3 datasets. Each 

prediction model (EMA, LSTM, and XGBoost) is combined in series with one of the 

optimization models (MV, MaxRet, and OLMAR) to build a combination model for addressing 

OLPS. Subsection 5.1 introduces datasets and settings of models' parameters. The following 

three subsections present the results of the final cumulative wealth, Sharpe ratio, and Calmar 

ratio, respectively. 

5.1  Experimental setup 

The numerical experiments are conducted on subsets of NYSE-O, NYSE-N, and TSE 

datasets in (Li and Hoi, 2015), consisting of consecutive 504 daily trading data. To better 

distinguish from the original datasets, we mark the subsets as NYSE-O', NYSE-N', and TSE', 

respectively. The NYSE-O' dataset comprises 36 American stocks starting from Jun. 3, 1962, 

the NYSE-N' dataset includes 23 American stocks beginning on Jan. 1, 1985, and the TSE' 

dataset contains 88 Canadian stocks since Jan. 4, 1994. The latest 252 ( K ) consecutive trading 

data serves as training data to anticipate the stock price in the next period. 

The time step size   of LSTM is set to 30. For XGBoost, the window size of RSI RSI  

equals 14, and the number of trees D  is 500 with the maximum depth 5  for each tree. The 

risk-aversion parameter of MV optimization model   is fixed on 1. According to Li and Hoi 

(2012), the threshold of OLMAR ϵ is selected as 10, where the model achieves relatively stable 
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performance across various datasets. The initial value of wealth KW  is given 1 and portfolio 

allocation Kx  equals (
1

𝑛
, … ,

1

𝑛
)

⊤

. 

5.2  Final cumulative wealth 

Final cumulative wealth acquired by Eq. (1) represents the total wealth accumulated from 

the start to the conclusion of all the investment periods. It is of significant interest to investors 

due to its ability to directly reflect the profit-generating performance of OLPS algorithms. 

Table 1: Final cumulative wealth 

Model NYSE-O' NYSE-N' TSE' 

EMA+MV 2.0880 1.1569 1.6779 

LSTM+MV 2.6489 1.2976 4.9267 

XGBoost+MV 1.3605 1.2856 1.5152 

EMA+MaxRet 2.4152 1.0434 2.7642 

LSTM+MaxRet 2.0577 3.4811 2.8809 

XGBoost+MaxRet 2.5799 1.3751 1.3970 

OLMAR (EMA) 1.4635 1.2782 1.3142 

OLMAR (LSTM) 3.2477 2.5776 2.2079 

OLMAR (XGBoost) 2.0827 1.2535 1.3743 

Table 1 demonstrates the final cumulative wealth over 252 investment periods of all 

combination models. The bold figures highlight the best-performance integration models with 

the same optimization model over three datasets. The combination models with the LSTM 

model exhibit remarkable performance in almost all cases. It indicates that introducing LSTM 

as a prediction model can achieve stable and good performance compared to exploiting EMA 

and XGBoost models. The outstanding performance of the LSTM+MV model on the TSE' 

dataset, increasing the initial wealth to nearly 5 times, further verifies the effectiveness of the 

LSTM model for processing sequence data. However, the XGBoost+MaxRet model stands out 

on the NYSE-O' dataset, suggesting that while LSTM leads in most situations, XGBoost may 

better capture market nuance hidden in extra features. The comparison of the performance of 

EMA-based and XGBoost-based models varies across different optimization models and 

datasets. It indicates that XGBoost model could be an option for risk-appetite investors. 

The observations highlight the significant benefits of incorporating the machine learning 

technique LSTM with portfolio optimization strategies in achieving higher cumulative wealth 

than the traditional EMA model. Conversely, integrating the other kind of machine learning 

model XGBoost may not have superior performance over the EMA method in some scenarios. 

5.3  Sharpe ratio 

When comparing portfolios that yield same expected returns, investors often prefer to 

choose the one exhibiting lower volatility. Besides final cumulative wealth, risk-adjusted return 

is also a significant indicator for investors to make decisions. It allows for a standardized  

comparison of portfolio performance under varying risk conditions. The Sharpe ratio is a 

commonly used risk-adjusted return metric. Initially introduced by Nobel laureate Sharpe in 

1966 (Sharpe, 1994), this ratio takes into account the investment risk characterized by the 

volatility of returns. With daily returns, we firstly obtain the daily excess returns of portfolios 

over a daily risk-free rate by Eq. (12). Then the formula of Sharpe ratio as given in Eq. (13) is 

252  multiplying the mean value of daily excess return divided by its standard deviation. 
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 𝑑𝑎𝑖𝑙𝑦𝐸𝑥𝑐𝑒𝑠𝑠𝑅𝑒𝑡𝑢𝑟𝑛𝑡 = 𝒚𝑡
⊤𝒙𝑡 − [(1 + 𝑟𝑓)

1

252 − 1], 

                                                                    for 𝑡 = 𝐾 + 1, 𝐾 + 2, ⋯ , 𝑇,                               (12) 

where fr  represents the annualized risk-free rate.  

Sharpe ratio =
𝑚𝑒𝑎𝑛(𝑑𝑎𝑖𝑙𝑦𝐸𝑥𝑐𝑒𝑠𝑠𝑅𝑒𝑡𝑢𝑟𝑛)

𝑆𝑡𝑑(𝑑𝑎𝑖𝑙𝑦𝐸𝑥𝑐𝑒𝑠𝑠𝑅𝑒𝑡𝑢𝑟𝑛)
× √252.                                    (13) 

Table 2: Sharpe ratio 

Model NYSE-O' NYSE-N' TSE' 

EMA+MV 1.9704 0.5471 1.3990 

LSTM+MV 3.1519 0.7747 3.9084 

XGBoost+MV 1.7359 1.1011 2.2154 

EMA+MaxRet 1.6955 0.2483 1.7902 

LSTM+MaxRet 1.3806 2.9757 1.9907 

XGBoost+MaxRet 2.0271 1.0861 0.9062 

OLMAR (EMA) 3.3521 1.4881 2.5703 

OLMAR (LSTM) 3.9779 3.3265 4.2933 

OLMAR (XGBoost) 3.3714 1.0908 2.0686 

The Sharpe ratio with fr  equals 0.02 of all combination models on the three datasets are 

displayed in Table 2. The comparative analysis demonstrates a pronounced ability of the 

LSTM-based models to achieve superior risk-adjusted returns. The performance of the 

OLMAR (LSTM) model surpasses its counterparts over all three datasets, showcasing LSTM's 

capability to simulate complex patterns and volatility is well reflected by the OLMAR 

optimization model. The excellent performance of the LSTM-based models on the TSE' dataset 

demonstrates LSTM's promising application in the Canadian stock market. The 

XGBoost+MaxRet model has outstanding performance on the NYSE-O' dataset while the 

XGBoost+MV model performs best on the NYSE-N' dataset, reflecting XGBoost may have a 

better adaptation to market characteristics. The XGBoost+MV model improves the Sharpe ratio 

significantly compared with the EMA+MV model on NYSE-N' and TSE' datasets and slightly 

decreases on NYSE-O'. Combined with corresponding cumulative wealth depicted in Table 1, 

we observe that the excess return of XGBoost+MV shows less volatility, which is preferred for 

risk-averse investors. Though XGBoost-based models beat EMA-based models in some 

circumstances, it still depends on market conditions and integrated optimization models.  

5.4  Calmar ratio 

The Calmar ratio, devised by Young (1991), serves as another essential risk-adjusted 

measurement of investment portfolios within a specific timeframe. Contrary to the Sharpe ratio, 

which assesses overall volatility of return, the Calmar ratio quantifies the return per unit of 

potential downside loss assessed by the worst peak-to-trough performance during the 

investment period. This attribute is particularly pertinent for scrutinizing high-stakes trading 

strategies where significant drawdowns pose a critical risk factor. Referring to Magdon-Ismail 

& Atiya (2004), the Calmar ratio is the annualized return over a certain period divided by the 

maximum drawdown (MDD) of the same period. Following Pospisil & Vecer (2010), we first 

define the running maximum at time t  as Eq. (14), and then MDD can be calculated by Eq. 

(15). The Calmar ratio can be expressed by Eq. (16). 

   𝑅𝑀𝑡 = max
𝑢∈[𝐾+1,⋯,𝑡]

∏ 𝒓𝑗
⊤𝒙𝑗

𝑢
𝑗=𝐾+1 .                                                    (14) 
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 MDD = max
𝑡∈[𝐾+1,𝐾+2,⋯,𝑇]

𝑅𝑀𝑡−∏ 𝒓𝑗
⊤𝒙𝑗

𝑡
𝑗=𝐾+1

𝑅𝑀𝑡
. (15) 

 Calmar ratio =
Annualized Return

MDD
, (16) 

where
252

1

 Annualized Return ( ) 1.
T

T K
t t

t K



 

  r x
•   

Table 3: Calmar ratio 

Model NYSE-O' NYSE-N' TSE' 

EMA+MV 6.0397 0.7563 2.2066 

LSTM+MV 17.5087 0.5038 25.4270 

XGBoost+MV 3.0727 2.2069 3.8410 

EMA+MaxRet 4.2457 0.1475 4.1302 

LSTM+MaxRet 2.1442 10.6356 4.7848 

XGBoost+MaxRet 5.3837 1.5415 1.0606 

OLMAR (EMA) 7.8724 2.1280 4.5672 

OLMAR (LSTM) 20.2930 13.5305 8.3300 

OLMAR (XGBoost) 12.5295 1.9046 4.2480 

Table 3 evaluates the Calmar ratio of the 9 models over 3 datasets. Similar to the results of 

the Sharpe ratio in Table 2, LSTM-based models fulfill the best performance in most situations, 

showcasing their stable and superior risk-adjusted returns, regardless of the risk of variance in 

returns or downside risk. The highest Calmar ratio reaches 25.4270 of the LSTM+MV model 

on TSE' dataset, far exceeding the outcome of the other two models combined with MV, which 

highlights the effectiveness of LSTM in capturing the characteristics of time series data and 

making reasonable predictions. When using OLMAR as the optimization model, LSTM 

consistently stands out on the three datasets in accordance with the final cumulative return, the 

Sharpe ratio, and the Calmar ratio. It indicates that the valuable speculations of LSTM are fully 

utilized by OLMAR. Although XGBoost-based models outperform EMA-based models in 

more than half of all the cases, their effectiveness varies with the optimization model and 

dataset. It is worth noting that, the same phenomenon XGBoost is striking whenever LSTM 

fails, is observed under all three evaluation criteria. This indicates that the information obtained 

by LSTM and XGBoost is complementary to a certain extent and models employing machine 

learning techniques LSTM and XGBoost constantly deliver superb cumulative return and risk-

adjusted return. These insights highlight the significant advantages of machine learning models 

over conventional financial modeling techniques, suggesting their promising applications in 

determining OLPS strategies, especially within highly volatile and unpredictable market 

environments. 

6. Conclusions 

In this work, we explore the integration of machine learning models LSTM and XGBoost 

with optimization models MV, MaxRet, and OLMAR for OLPS, intending to improve the 

forecasting of asset price and thereby enhancing the performance of combined models from the 

conventional prediction method EMA based models. The numerical experiments indicate that 

sophisticated machine learning models provide substantial improvements concerning both 

cumulative return and risk-adjusted return measured by Sharpe ratio and Calmar ratio. 

However, the ameliorated phenomenons depend on the selection of the optimization model and 

the behavior of the dataset, notably for XGBoost. The results of LSTM-based models showcase 

the utility of LSTM in coping with the sequentially updated financial time series data, whose 
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patterns are challenging to acquire by the traditional EMA model. This enhanced modeling 

capability is crucial for developing a more efficient OLPS model. The overall performance of 

LSTM-based models has the potential to be improved by integrating with other optimization 

models. For XGBoost-based models, the performance may be strengthened by alternating or 

adding the features used for training and prediction, which are closing price, RSI, EMA9, 

MACD, and the difference between MACD and MACD signal (MACDdiff) in our models.  

We recognize the limitation of our study that does not consider transaction costs and price 

impact, which are factors not ignorable in real-world trading scenarios. Our future study may 

assess the performance of integrated OLPS models with machine learning techniques under 

more realistic market conditions, such as including transaction costs. Additionally, while this 

work focuses on the effects of machine learning models on the forecasting stage, their impacts 

on the optimization process of OLPS are worthy to be investigated. With the development of 

machine learning models, financial analysis and portfolio management are expected to be 

continuously innovated, leading to more sophisticated and adaptive financial tools. 
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