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Abstract

Online portfolio selection (OLPS) is a critical issue in computational finance. It sequentially
updates portfolio allocations across multiple investment periods as new information becomes
available. The main objective of OLPS is to maximize the final cumulative return, typically
achieved through asset price prediction and portfolio optimization steps in each investment
period. The properties of financial data, such as non-linearity, make certain machine learning
methods applicable to the problem with potential benefits. To explore the effectiveness of
integrating machine learning methods on OLPS, this work employs two machine learning
models, the Long Short-Term Memory Networks (LSTM) and Extreme Gradient Boosting
(XGBoost), on the asset price forecasting stage. These models are integrated with three
optimization models: Mean-Variance, Max-Return, and On-Line Moving Average Reversion
(OLMAR) to facilitate the decision-making process. For comparison purpose, a traditional
price forecasting approach, the Exponential Moving Average (EMA) model, is utilized with
the same optimization models as control groups. Numerical experiments are conducted using
three commonly used public datasets, and the performance of the OLPS models is evaluated in
terms of both final cumulative wealth and risk-adjusted return. The results indicate the
advantages of incorporating machine learning models in various circumstances. Among the
nine OLPS models, LSTM-based models outperform others in most scenarios. However, the
effectiveness of XGBoost-based models varies depending on the optimization models and
datasets used.

Keywords: Online Portfolio Selection, Machine Learning, LSTM, XGBoost, Exponential
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1. Introduction

Online portfolio selection (OLPS) is a primary issue in computational finance, and research
of it has extended to other areas such as statistics and artificial intelligence (Li and Hoi, 2014).
OLPS determines the optimal portfolio allocations over multiple investment periods
sequentially (Li & Hoi, 2015). Before making each investment decision using the optimization
algorithm, accurately forecasting asset values to estimate future returns is an essential step.
Capturing price patterns and numerically combining price trends are two widely developed
approaches in the prediction stage of OLPS (Xi et al., 2023). However, due to the elaborate
and non-linear property of financial data, traditional methods are not sufficient for financial
analysis (Dai et al., 2024). This work aims to explore the potential benefits of integrating
machine learning techniques into the prediction stage of OLPS strategies.

The Long Short-Term Memory Networks (LSTM) (Schmidhuber & Hochreiter, 1997) and
Extreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016) from two categories of
machine learning models are selected for asset price anticipating. LSTM is a specialized
Recurrent Neural Network (RNN), which effectively processes sequential data, such as time
series data (Graves, 2012). However, standard RNN has limitations on long-term dependencies
due to the vanishing gradient problem (Bengio et al., 1994). The architecture of LSTM is
designed to deal with the issue (Miao et al., 2015), making it suitable for forecasting financial
time series (Martelo et al., 2022). XGBoost is built on gradient boosted regression tree, whose
mechanism is integrating weak information to recognize complex patterns and relations that
are difficult for linear algorithms to detect (Moghar & Hamiche, 2020). With the improvement
in both speed and performance (Hongjoong, 2021), XGBoost is more applicable to practical
problems. As noted by Chen (2023), XGBoost excels in predicting stock prices due to its
sophisticated handling of complex data relationships and its high predictive accuracy. To better
understand the effectiveness of these two machine learning models, we apply the traditional
Exponential Moving Average (EMA) (Li & Hoi, 2015) used in OLPS literature as a comparison
method. Three optimization models: Mean-Variance (Markowitz, 1952), Max-Return, and On-
Line Moving Average Reversion (Li & Hoi, 2012) are integrated for the second stage of OLPS.

The remainder of the work is structured as follows. In Section 2, we present the problem
formulation based on several assumptions. Then, we explore the structures of three prediction
models for OLPS in Section 3. In Section 4, we present three optimization models and the
merging of a prediction model with an optimization model. Section 5 displays the settings of
numerical experiments and the corresponding results. Ultimately, we conclude the work in
Section 6.

2. Problem formulation

This section expounds the decision-making framework of OLPS, representing a classical
example of sequential optimization. The assumptions following some literature (Li et al., 2015)
are made to simplify the analysis of developing and evaluating the machine learning models
for OLPS. First, no transaction costs or taxes are incurred while trading. Second, assets can be
bought or sold in any quantity at the closing price. Third, the implementation of portfolio
selection strategies does not affect the market behavior and other assets’ prices. We
acknowledge that these aspects may have an impact on practical applications (Li et al., 2015).

Considering an investor plans to invest in n different assets over T periods, where the first
K periods data is treated as historical data and the investment behavior starts from the K +1
period. The historical closing price over period t is denoted as p; = (P1, Pezy --» Pen) | Where
p, is the closing price of asset i at period t, for i=12,---,n and t=1,2,---,T . The price
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Pi

(t-1)i
for t=2,---,T and r, =1. The asset return vector in period t is ¥, = (Ve1, Vez, -or Yen) |
where y, =r;, —1. The predicted price vector, predicted price relative vector, and predicted

return vector at period t is denoted by p,, 7., ¥, € R™!, respectively. Based on the latest
information, at the beginning of each period, the investor decides on an investment
strategy x; € R™1, where x; denotes the fraction of capital allocated to asset i at period t.
Given the initial wealth at the end of period K, W, , the final cumulative wealth by the end of
period T is given by Eq. (1).

relative vector for all assets in period t is denoted as r, = (141, 732, -, Ten) |, Where 1, =

Wr = Wg HZ:=K+1 rg—xt- 1)

3. Prediction models

This section is devoted to explaining how to apply the three models EMA, LSTM, and
XGBoost to the stock price prediction part of OLPS in three subsections, respectively. Note
that since the price is predicted for each asset individually, we simplify the notation in this
section by omitting i, e.g. we use p, instead of p,. For a fair comparison, all three models

use the same latest K historical price p, =[P, .1, Pri.2:---» P,] to predict p,,,.

3.1 EMA model

As a variation of the Weighted Moving Average (WMA), the EMA model employs all
historical data, with more recent data having a higher weight. It is commonly used in time series
forecasting, particularly in financial markets for tracking stock prices and trading volumes
(Singla & Malik, 2016). The predicted price at time t+1 can be calculated by the Model (2).

EMA1 = Prka
EMA =a-p_ ¢, +(1-a)-EMA_, (2)
fork=2,3,---, K.

. Then

Here, « is the smoothing factor ranging from 0 to 1, which is set as « =
Pra = EMA.

3.2 LSTM model

The LSTM network consists of a series of LSTM blocks, whose input includes the output
(information) of the previous block. The number of blocks depends on the time step size of
training data. The framework of one LSTM block is demonstrated in Figure 1.

K+1
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Figure 1: One LSTM block Framework (Wang et al., 2021)

Given the training dataset p, and time step size w, we first generate new training data
Pustm :{pt_Kmlpt_K+w+1""apt_1} and Pyistm :{pt—K+a)+1’pt—K+a)+2"”1pt} ) where
Py =[P wits Pepinro P] Tor k=t—-K+o,t-K+w+1---,t. Let batch size equal 1, the
LSTM model is trained iteratively by (P, smmsP,sw)- The LSTM block dealing with p,
comprises cell state ¢, together with three gates: the forget gate f, , the input gate i, , and the
output gate o, , then the block output and hidden state represented by h, can be obtained with

o, and c, (Farzad etal., 2019). At time k, the gates and states are computed by the following
equations:

f, =oWp, +Wih , +by),
i, =oW,p +W,h_;+Db),

0, =0 Wy p, +W,,h; +b,),

¢, =tanh(W,p, +W_h ,+b.),
¢ =foc,+iO¢,

h, =0, Otanh(c,),

where o(-) and tanh(:) represent the sigmoid and hyperbolic tangent functions, respectively,
the operator © is the element-wise product. Let *={i, f,0,c} and d be the hidden size, then

W,; € R and W,, € R**4 are weight matrices, and b, € R%** are bias vectors. They can
be trained by adopting the Mean Squared Error (MSE) loss function calculated by Eq. (3).
K
_ z (pj - f)j)z
MSE — j=k—w+1 . (3)
w

3.3 XGBoost model

Besides closing price, using XGBoost for prediction needs more features. The widely used
technical analysis indicators, Relative Strength Index (RSI) (Taran-Morosan, 2011), EMA over
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a period of 9 (EMA9), Moving Average Convergence and Divergence (MACD) (Appel, 2005),
and MACDdiff (the difference between MACD and MACD signal (Appel, 2005)) are
calculated as additional training features. Provided p, and window size of RSI ayg, , we first

generate my = (py, RSIy, EMA9,, MACD,, MACDdiff,,)T , for k=t—l+Lt—-1+2,---,t .
Note that | = K —agg, +1 since the first w., —1 terms of RSI are not applicable. Then we train
XGBoost model with  regenerated training dataset (M,pjuggoq) - Where
M :{mt—l+l’mt—l+2"“’mt—l}1 and P yxcBoost :[pt—l+2’ Petgzs s pt] . The model prediction of
Py.. can be given by Eq. (4):

pk+l :ng (mk)’ 4)

where g is atree in the space of regression trees and D is the number of trees.

During the training process, the objective function to be minimized is defined as Eq. (5):
t-1 D

Obj(®) = L( Py f)k+1)+ZQ(gd)a )
- d=1

k=t—1+1

where ©® denotes the model parameters, L(-) is the loss function assessing the model's
prediction accuracy on training data, and Q(-) as expressed in Eq. (6) represents the
regularization term that controls model complexity to prevent over-fitting.

1 N
Q(g)=yN +§/1§luf, (6)
j=

where N is the number of tree leaves, u € R¥is the vector of leaf weights, » is the penalty on
the number of leaves, and A is the L, regularization coefficients.

Instead of learning parameters of all trees at once, it adds the newly learned tree to the

already learned ones. The predicted value after generating d-th tree can be expressed as
B = pl +g,(m,), note that p{% =0. Choosing squared error as the loss function L(-),

the objective function at step d can be expressed as follows:
t-1 d
OB = 3 [Pes— (B +9g (MO + > €(g)). ()
k=t—I1+1 =1

Applying the second-order Taylor expansion for the loss and removing all constants, the
parameters at step d are updated by minimizing Eq. (8).

t-1

Z [V, 9, (mk)+%®kg§(mk)]+g(gd)! 8)

k=t—1+1

where Py =0, L(Py, Br”) and @y =05 LD B

4. Online portfolio selection frameworks

In this section, we first introduce the application of three optimization models Mean-
Variance, Max-Return, and On-Line Moving Average Reversion for updating portfolios in a
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specific period t +1 of OLPS. Then we demonstrate how to integrate the prediction models
with the optimization models in OLPS.
4.1 Mean-Variance model

The Mean-Variance (MV) model generates an efficient frontier to consider the trade-off
between maximizing returns and minimizing risks (Hongjoong, 2021). Here, to decide the
portfolio allocation of time t+1, we apply Model (9) to maximize a quadratic function of
expected return with a penalty on the stock variance (risk).

T 8.1
max X' Ye+1 = 5% Ve X,
st. xT1=1, 9)
x =0,

where v,,, € R™ "™ is the asset return covariance matrix at time t +1, calculated based on the
past 251 return data, & is the risk-aversion parameter, and 1 € R™*! is the column vector of
all ones.

4.2 Max-Return model

The Max-Return model (MaxRet) with the risk-aversion parameter of Model (9) set to 0 is
available for investors considering only the maximum expected return. It can be obtained by
solving Model (10).

T/\
max X' Y1,

st. xT1=
1, (10)

4.3 OLMAR

Empirical studies indicate that the mean reversion trading principle, arguing that the stocks'
performance will reverse in the future, is suitable for the markets (Li et al., 2013). As a
multiple-period mean reversion, On-Line Moving Average Reversion (OLMAR) approach
propounded by Li and Hoi (2012), is designed for online portfolio selection with the sequential
nature. The fundamental idea for its optimization part, as formulated in Model (11), is
maximizing expected return while maintaining or making minimal adjustments to the original
asset allocation.

. 1

min Z||x — xll?,
X

st. xTf. =6

xT1 =
1, (11)

x=0,

where € is a threshold. The algorithm of the portfolio updating process refers to (Li and Hoi,
2012).
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4.4 Integration of prediction and optimization models

Once the latest information (price) p; is obtained, p.,;can be predicted with the prediction
models mentioned in Section 3. The predicted price relative vector #,,, and predicted return
vector y,,,can be calculated, correspondingly. Then the portfolio allocation strategy x4 is
determined by optimization models. The whole procedure for updating the portfolio of OLPS
is shown in Algorithm 1.

Input: Historical prices of all n assets; Parameters of specific prediction and optimization
models; Training data size, K.

Output: Final cumulative wealth, W.

Initialize: Investment strategy, xx; Original wealth, Wy.

Fort=K,K+1,...,T-1do

Provide the latest K historical price of each asset i, pp; = [Pr—k+1,0 Peokt2,ir -+ Pei)-

Train a prediction model and then predict the price of next period, p,;,; for each

asset i (EMA model skips the training process).

Generate the price vector of the next period, P, 1.

_ Pt+1

Calculate predicted price relative vector, ¥, = ~
t

Calculate predicted return vector, y,,, = ”;H -
t

Update portfolio allocation vector by the particular optimization model, x; ..

Calculate price relative vector, 7., = p;“.
t

Update cumulative wealth, W,,; = W,rl,1x:41
end

Algorithm 1: Integration of prediction and optimization models for OLPS.

5. Numerical experiments

This section details numerical experiments of 9 combination models on 3 datasets. Each
prediction model (EMA, LSTM, and XGBoost) is combined in series with one of the
optimization models (MV, MaxRet, and OLMAR) to build a combination model for addressing
OLPS. Subsection 5.1 introduces datasets and settings of models' parameters. The following
three subsections present the results of the final cumulative wealth, Sharpe ratio, and Calmar
ratio, respectively.

5.1 Experimental setup

The numerical experiments are conducted on subsets of NYSE-O, NYSE-N, and TSE
datasets in (Li and Hoi, 2015), consisting of consecutive 504 daily trading data. To better
distinguish from the original datasets, we mark the subsets as NYSE-O', NYSE-N', and TSE',
respectively. The NYSE-O' dataset comprises 36 American stocks starting from Jun. 3, 1962,
the NYSE-N' dataset includes 23 American stocks beginning on Jan. 1, 1985, and the TSE'
dataset contains 88 Canadian stocks since Jan. 4, 1994. The latest 252 (K ) consecutive trading
data serves as training data to anticipate the stock price in the next period.

The time step size @ of LSTM is set to 30. For XGBoost, the window size of RSI a,

equals 14, and the number of trees D is 500 with the maximum depth 5 for each tree. The
risk-aversion parameter of MV optimization model ¢ is fixed on 1. According to Li and Hoi
(2012), the threshold of OLMAR e is selected as 10, where the model achieves relatively stable
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performance across various datasets. The initial value of wealth W, is given 1 and portfolio
1

. 1 T

allocation x, equals (—, —) :
n n

5.2 Final cumulative wealth

Final cumulative wealth acquired by Eq. (1) represents the total wealth accumulated from
the start to the conclusion of all the investment periods. It is of significant interest to investors
due to its ability to directly reflect the profit-generating performance of OLPS algorithms.

Table 1: Final cumulative wealth

Model NYSE-O' NYSE-N' TSE'
EMA+MV 2.0880 1.1569 1.6779
LSTM+MV 2.6489 1.2976 4.9267
XGBoost+MV 1.3605 1.2856 1.5152
EMA+MaxRet 2.4152 1.0434 2.7642
LSTM+MaxRet 2.0577 3.4811 2.8809
XGBoost+MaxRet 2.5799 1.3751 1.3970
OLMAR (EMA) 1.4635 1.2782 1.3142
OLMAR (LSTM) 3.2477 2.5776 2.2079
OLMAR (XGBoost) 2.0827 1.2535 1.3743

Table 1 demonstrates the final cumulative wealth over 252 investment periods of all
combination models. The bold figures highlight the best-performance integration models with
the same optimization model over three datasets. The combination models with the LSTM
model exhibit remarkable performance in almost all cases. It indicates that introducing LSTM
as a prediction model can achieve stable and good performance compared to exploiting EMA
and XGBoost models. The outstanding performance of the LSTM+MV model on the TSE'
dataset, increasing the initial wealth to nearly 5 times, further verifies the effectiveness of the
LSTM model for processing sequence data. However, the XGBoost+MaxRet model stands out
on the NYSE-O' dataset, suggesting that while LSTM leads in most situations, XGBoost may
better capture market nuance hidden in extra features. The comparison of the performance of
EMA-based and XGBoost-based models varies across different optimization models and
datasets. It indicates that XGBoost model could be an option for risk-appetite investors.

The observations highlight the significant benefits of incorporating the machine learning
technique LSTM with portfolio optimization strategies in achieving higher cumulative wealth
than the traditional EMA model. Conversely, integrating the other kind of machine learning
model XGBoost may not have superior performance over the EMA method in some scenarios.

5.3 Sharpe ratio

When comparing portfolios that yield same expected returns, investors often prefer to
choose the one exhibiting lower volatility. Besides final cumulative wealth, risk-adjusted return
is also a significant indicator for investors to make decisions. It allows for a standardized
comparison of portfolio performance under varying risk conditions. The Sharpe ratio is a
commonly used risk-adjusted return metric. Initially introduced by Nobel laureate Sharpe in
1966 (Sharpe, 1994), this ratio takes into account the investment risk characterized by the
volatility of returns. With daily returns, we firstly obtain the daily excess returns of portfolios
over a daily risk-free rate by Eq. (12). Then the formula of Sharpe ratio as given in Eq. (13) is

\/252 multiplying the mean value of daily excess return divided by its standard deviation.
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1
dailyExcessReturn, = y{ x, — [(1 + rf)252 - 1],
fort=K+1,K+2-,T, (12)

where r, represents the annualized risk-free rate.

Sharpe ratio = mean(dailyExcessReturn) 5 \/E (13)

Std(dailyExcessReturn)

Table 2: Sharpe ratio

Model NYSE-O' NYSE-N' TSE'
EMA+MV 1.9704 0.5471 1.3990
LSTM+MV 3.1519 0.7747 3.9084
XGBoost+MV 1.7359 1.1011 2.2154
EMA+MaxRet 1.6955 0.2483 1.7902
LSTM+MaxRet 1.3806 2.9757 1.9907
XGBoost+MaxRet 2.0271 1.0861 0.9062
OLMAR (EMA) 3.3521 1.4881 2.5703
OLMAR (LSTM) 3.9779 3.3265 4.2933
OLMAR (XGBoost) 3.3714 1.0908 2.0686

The Sharpe ratio with r, equals 0.02 of all combination models on the three datasets are

displayed in Table 2. The comparative analysis demonstrates a pronounced ability of the
LSTM-based models to achieve superior risk-adjusted returns. The performance of the
OLMAR (LSTM) model surpasses its counterparts over all three datasets, showcasing LSTM's
capability to simulate complex patterns and volatility is well reflected by the OLMAR
optimization model. The excellent performance of the LSTM-based models on the TSE' dataset
demonstrates LSTM's promising application in the Canadian stock market. The
XGBoost+MaxRet model has outstanding performance on the NYSE-O' dataset while the
XGBoost+MV model performs best on the NYSE-N' dataset, reflecting XGBoost may have a
better adaptation to market characteristics. The XGBoost+MV model improves the Sharpe ratio
significantly compared with the EMA+MV model on NYSE-N' and TSE' datasets and slightly
decreases on NYSE-O'. Combined with corresponding cumulative wealth depicted in Table 1,
we observe that the excess return of XGBoost+MYV shows less volatility, which is preferred for
risk-averse investors. Though XGBoost-based models beat EMA-based models in some
circumstances, it still depends on market conditions and integrated optimization models.

5.4 Calmar ratio

The Calmar ratio, devised by Young (1991), serves as another essential risk-adjusted
measurement of investment portfolios within a specific timeframe. Contrary to the Sharpe ratio,
which assesses overall volatility of return, the Calmar ratio quantifies the return per unit of
potential downside loss assessed by the worst peak-to-trough performance during the
investment period. This attribute is particularly pertinent for scrutinizing high-stakes trading
strategies where significant drawdowns pose a critical risk factor. Referring to Magdon-Ismail
& Atiya (2004), the Calmar ratio is the annualized return over a certain period divided by the
maximum drawdown (MDD) of the same period. Following Pospisil & Vecer (2010), we first
define the running maximum at time t as Eq. (14), and then MDD can be calculated by Eq.
(15). The Calmar ratio can be expressed by Eqg. (16).

= T
e = uE[IIp+al),(...,t] l_[}l=1'<+1 r; X;. (14)
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t T
RMt_Hj=K+1 T]- x]‘

MDD = max (15)
te[K+1,K+2,T] RM¢
Calmar ratio = Annualized Return (16)

MDD !

252

T 252
where Annualized Return = (H X)) -1.
t=K+1

Table 3: Calmar ratio

Model NYSE-O' NYSE-N' TSE'
EMA+MV 6.0397 0.7563 2.2066
LSTM+MV 17.5087 0.5038 25.4270
XGBoost+MV 3.0727 2.2069 3.8410
EMA+MaxRet 4.2457 0.1475 4.1302
LSTM+MaxRet 2.1442 10.6356 4.7848
XGBoost+MaxRet 5.3837 1.5415 1.0606
OLMAR (EMA) 7.8724 2.1280 4.5672
OLMAR (LSTM) 20.2930 13.5305 8.3300
OLMAR (XGBoost) 12.5295 1.9046 4.2480

Table 3 evaluates the Calmar ratio of the 9 models over 3 datasets. Similar to the results of
the Sharpe ratio in Table 2, LSTM-based models fulfill the best performance in most situations,
showcasing their stable and superior risk-adjusted returns, regardless of the risk of variance in
returns or downside risk. The highest Calmar ratio reaches 25.4270 of the LSTM+MV model
on TSE' dataset, far exceeding the outcome of the other two models combined with MV, which
highlights the effectiveness of LSTM in capturing the characteristics of time series data and
making reasonable predictions. When using OLMAR as the optimization model, LSTM
consistently stands out on the three datasets in accordance with the final cumulative return, the
Sharpe ratio, and the Calmar ratio. It indicates that the valuable speculations of LSTM are fully
utilized by OLMAR. Although XGBoost-based models outperform EMA-based models in
more than half of all the cases, their effectiveness varies with the optimization model and
dataset. It is worth noting that, the same phenomenon XGBoost is striking whenever LSTM
fails, is observed under all three evaluation criteria. This indicates that the information obtained
by LSTM and XGBoost is complementary to a certain extent and models employing machine
learning techniques LSTM and XGBoost constantly deliver superb cumulative return and risk-
adjusted return. These insights highlight the significant advantages of machine learning models
over conventional financial modeling techniques, suggesting their promising applications in
determining OLPS strategies, especially within highly volatile and unpredictable market
environments.

6. Conclusions

In this work, we explore the integration of machine learning models LSTM and XGBoost
with optimization models MV, MaxRet, and OLMAR for OLPS, intending to improve the
forecasting of asset price and thereby enhancing the performance of combined models from the
conventional prediction method EMA based models. The numerical experiments indicate that
sophisticated machine learning models provide substantial improvements concerning both
cumulative return and risk-adjusted return measured by Sharpe ratio and Calmar ratio.
However, the ameliorated phenomenons depend on the selection of the optimization model and
the behavior of the dataset, notably for XGBoost. The results of LSTM-based models showcase
the utility of LSTM in coping with the sequentially updated financial time series data, whose
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patterns are challenging to acquire by the traditional EMA model. This enhanced modeling
capability is crucial for developing a more efficient OLPS model. The overall performance of
LSTM-based models has the potential to be improved by integrating with other optimization
models. For XGBoost-based models, the performance may be strengthened by alternating or
adding the features used for training and prediction, which are closing price, RSI, EMA9,
MACD, and the difference between MACD and MACD signal (MACDdiff) in our models.

We recognize the limitation of our study that does not consider transaction costs and price
impact, which are factors not ignorable in real-world trading scenarios. Our future study may
assess the performance of integrated OLPS models with machine learning techniques under
more realistic market conditions, such as including transaction costs. Additionally, while this
work focuses on the effects of machine learning models on the forecasting stage, their impacts
on the optimization process of OLPS are worthy to be investigated. With the development of
machine learning models, financial analysis and portfolio management are expected to be
continuously innovated, leading to more sophisticated and adaptive financial tools.
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