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Abstract  
 

Customer paths can be used for several purposes, such as understanding customer needs, defining 

bottlenecks, improving system performance. Two of the principal difficulties depend on 

discovering customer paths due to dynamic human behaviors and collecting reliable tracking data. 

Although machine learning methods have contributed to individual tracking, they have complex 

iterations and problems to produce understandable visual results. Process mining is a methodology 

that can rapidly create process flows and graphical representations. In this study, customer flows 

are created with process mining in a supermarket. The differences between the paths of customers 

purchased and non-purchased are discussed. The results show that both groups have almost similar 

visit duration, which is 87.5 minutes for purchased customers and 86.6 minutes for non-purchased 

customers. However, the duration of aisles is relatively small in non-purchased customer flows 

because customers aim to return or change the item instead of buying.  

  

Index Terms—customer analytics, indoor locations, process mining, supermarket  
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I. INTRODUCTION  

The visited places in an indoor location include many uncovered information such as customer 

behaviors, queue in the entrance or exit, and system bottlenecks. First, it is a necessity to collect the 

visited location data of customers to extract meaningful information. There are several ways of data 

collection for human tracking [1]. Wireless-based technologies such as WiFi, Bluetooth, and RFID 

provide non-manipulated location data. The gathered customer data can be used for both descriptive 

statistics to summarize customer analytics and discovering customers' followed paths to explain 

general overview [2].  Creating the customer path from location data is possible for various ways. 

Pattern recognition and  

Bayesian network models, which are machine learning methods, enable to improve path discovery 

models [3]. However, these methods can formulate complicated mathematical rules that detect and 

analyze the user path. Hence, these models are mainly not understandable [4], [5]. The obvious and 

personalized paths provide decision-makers to examine customer behavior properly and detect 

undesired situations such as bottlenecks and queues [6].  

Process mining is an intersection domain between process management and data science [7]. It 

uses an event log as input, which is shown in Table I as a sample. An event log must include at least 

three essential characteristics, which are Case ID, Timestamp, Activity. In this study, Case ID is 

shown with Subscriber_ID. The timestamp is divided into two parts as Start and End by data 

preparation steps. Activity is thought visited aisle. Process mining gives readable process flows by 

presenting important customer behaviors in the process using prepared event logs [8]. Workflows 

are mainly created to show process models. They easily represent processes by identifying 

behavioral differences and creating valuable insights [6], [9].  

 

Table I: A SAMPLE OF EVENT LOG  

 

Subscriber_ID  Description  Start  End  

1462_v1  Entrance  18.11.2018 18:45:53  18.11.2018 18:46:05  

1462_v1  Cashier  18.11.2018 18:46:06  18.11.2018 19:01:40  

1462_v1  Home  18.11.2018 19:02:39  18.11.2018 19:02:59  

1462_v3  Entrance  22.12.2018 16:59:24  22.12.2018 17:00:06  

1462_v3  Ironmongery  22.12.2018 17:00:07  22.12.2018 17:01:31  

1462_v3  Construction  22.12.2018 17:01:38  22.12.2018 17:02:28  

1462_v3  Cashier  22.12.2018 17:02:29  22.12.2018 17:03:08  

 

In the literature, customer pathway investigations usually generate a graphical illustration to 

explain the paths. However, the produced paths are intuitive without any detailed study [10]. 

Process mining reveals the core meaning of the followed paths. Accordingly, process mining is 

applied to find pathways of shoppers in a supermarket to learn their behaviors. The most crucial 

step is to collect customer data. Various data collection technologies gather much more location 

data to analyze customer analytics. 
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 Since the actual time of customer movements cannot be recorded in traditional ways, the 

technological improvements are adapted to non-invasive data collection [11]. Willeims et al. [12] 

adopted WiFi to compile a retail inventory technology, which is categorized according to the type 

of shopping value and the stage of the shopping cycle. Also, Carrera et al. [13] applied real-time 

human tracking using WiFi technology.  Fukuzaki et al. [14] attempt to determine the real number 

of customers in the shopping mall with WiFi technology. Oosterlinck et al. [15] established 

Bluetooth based scanners devices in a shopping mall. They collected data in high quality at low 

cost. Yewatkar et al. [16] introduced an intelligent shopping cart, which records purchased products 

and online transaction with RFID and ZigBee.  

In various researches, human movements are detected by applying process mining by considering 

personal paths similar to a business process. Maarif [17] adopted process mining to display people 

daily activities in the visual description. Dogan et al. [2] used process mining to discover and 

explain the main behavioral changes in male and female paths in a shopping mall. The influence of 

workload on service times are investigated by recognizing the interaction between them with 

process mining [18]. Besides, it is implemented to examine the human movements in rooms for 

nine people. Data were collected with RFID technology and prepared for process mining [4].  

Former studies analyzed individual activity recognition [19] and visualization [3], [17], [20]. 

However, none of them produced a readable and understandable display at a personal level. In the 

research, process mining procedures are employed to create shopping behaviors of customers. The 

suggested method is originated from the grammatical inference pattern recognition [21] and 

explains followed paths as timed parallel automatons, as experimented by Fernandez-Llatas et al. 

[22].  

II. CASE STUDY  

A. Data Preparation  

Because the raw data are not suitable to apply process mining, some data preparation iterations 

are applied. For example, each visit made by the same customer refers to a new case, Subscriber_ID 

is revised, including visit numbers. For instance, 1462_v1 gives the details for the first visit of the 

customer 1462. Almost all data collection systems record only one timestamp, which is mainly the 

start time. Since a customer cannot be in more than one location at the same time, the end time can 

be easily calculated. Aisles are combined according to the most dominant product to decrease the 

number of considered locations. The start and end time were limited between 08:00:00 and 22:00:00 

because of the working time of the supermarket. The visit duration for each aisle is determined as 

at least fifteen seconds to ignore walking people instead of shoppings.  

B. Descriptive Statistics  

The customer location data were gathered via iBeacons devices Bluetooth-based technology in a  

supermarket from August 2018 to March 2019. iBeacons have a 50-meter coverage area and 

transmit radio signals every 3 seconds. Although one corridor includes more than one product 

group, aisles are named according to the most dominant product in the shelves. Raw data, which 

belong to 1727 unique customers, consisted of near to two thousand rows at the beginning of the 

study.  After data preparation steps, 1274 cases, including 11000 aisle visits, were obtained from 

784 unique customers. The average duration is 31.3 minutes per case. 
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 Fig. 1 shows the average visit duration for the top nine cases, which consists of 80% of total 

visits with respect to the number of different visits.   

 

 

  
Fig. 1. Mean visit duration.  

 

Six hundred twenty-two (622) out of 1274 visits are ended up before 3 minutes. The customers 

who spend less than 3.13 minutes visit only one aisle. One hundred sixty-six (166) customers, who 

visit at least two aisles, left the supermarket before 6.12 minutes.  

Table II gives aisles statistics. Typically, the number of appearances in Entrance should be greater 

than or equal to other aisles. However, the data were collected by smart devices working with 

Bluetooth; connections sometimes can be cut due to personnel or technical issues. Therefore, the 

number of being active in Entrance is less than being active in Construction in the case study.  

 

TABLE II: VISITED AISLES STATISTICS  

  
 

One out of five shoppers visits Construction aisle with a mean duration of 5.82 minutes, whereas 

15% of shoppers appeared in Entrance aisle. On the other hand, the spent times in these aisles has 

an inverse ratio. The mean duration in Entrance is almost two times higher than in Construction 

aisle.  

C. Process Mining Results  

Fig. 2 shows the purchased customer flows starting from Entrance. The typical property of this 

flow is the end with Cashier, which indicates customers wait to pay for their purchased items. The 

thickness of the arrows increases when the number of transitions between two nodes increases. 

Similarly, the darkness of the colors in the nodes increase when the number of executed activities 

increases. 
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 The number on the arrows presents walking time between two aisles. For example, customers who 

purchase an item spend approximately 17 minutes on average, then walk about 7.5 minutes to exit. 

The duration in Cashier is 18.4 minutes. This is because aisles are combined according to the most 

dominant product. That means Cashier aisle includes some item groups or services such as customer 

services, snacks, and promotion items. Hence, Cashier duration does not mean the time during the 

payment queue.  

On the other hand, Fig. 3 depicts non-purchased customer flows starting from Entrance. The 

typical property of this flow is the end with Exit Non-purchasing, which indicates customers do not 

pay. It may because customers visit the supermarket for returns and change. Due to the supermarket 

layout, entering customer must walk around. Therefore, the duration shown in the rectangles is 

relatively small. After Entrance, customers follow several directions such as Exit without purchase, 

Garden, and Home. Purchased and non-purchased customers have almost similar visit duration, 

which are 87.5 minutes and 86.6 minutes, respectively. Interestingly, four customers return the 

supermarket after exit.  

 

 
 

 

Fig. 2. Purchased Customer Flows.  
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Fig. 3. Non-Purchased Customer Flows.  

III. DISCUSSIONS AND CONCLUSIONS  

In the investigation, a process mining implementation is presented to discover shopper paths in a 

supermarket. The proposed methodology has been examined with 784 unique customers using real-

time tracking data from August 2018 to March 2019. The real data were gathered with iBeacon 

devices, which have Bluetooth-based technology. Bluetooth is a cost-effective technology that 

gives unbiased and impartial views.  

According to the research conclusions, process mining application with an indoor location system 

(Bluetooth tracking) facilitates to create a clear view. The results are evaluated concerning 

descriptive statistics and process mining. Whereas the results of descriptive statistics is data-

oriented, process mining provides process-based solutions. Because consumers visited the 

supermarket more than once, 1274 paths are created for 784 customers.   
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Because the spent time for the purchased and non-purchased customer is almost similar, developing 

a recommendation system may increase purchased customer rate. Therefore, we will focus on 

developing a personalized recommendation system in future work. Moreover, clustering followed 

paths may improve to understand visit purposes of shoppers. At the same time, path clustering may 

support the recommendation system. Hence, one of the next studies may be path clustering 

considering sequences of visited aisles and spent time.   
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