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Abstract 

 

Microbial contamination of vegetables as a major safety challenge is known in recent 

years. Detection of Escherichia coli (E. coli ATCC 8739) in vegetables especially lettuce is 

very important issue for post-harvest management in Iran. Non-destructive detection and 

evaluation of E. coli contamination in fresh lettuce leaf as a main aim of this work was 

explored using Visible Near-infrared spectroscopy (Vis/NIR). Reflectance spectra in 

intractance mode were measured using a spectrometer at the range of 350–1100 nm, and 200 

fresh lettuce leaves given three different treatments of E. coli solution (0.1, 0.2 and 0.3 ml) 

were used for spectra measurements and total E. coli determination. Classification of lettuce 

samples based on different concentration of E. coli solution was performed by Partial least 

Squares Discriminant Analysis (PLS-DA) with different pre-processing methods into the two 

different groups of “safe” and “unsafe” samples. The best model was recommended using 

standard normal variation (SNV) + second derivate (D2) pre-processing methods with the 

minimum standard deviation of cross-validation (SECV = 0.256). Besides, a good correlation 

(R2 of 0.93) between Vis/NIR spectral data and the presence of E. coli contamination proved 

the possibility of Vis/NIR spectroscopy for microbial detection and evaluation in lettuce. 
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1. Introduction 

Escherichia coli (abbreviated as E. coli) is a foodborne zoonotic pathogen that found in the 

environment, foods, and intestines of people and animals. One of the huge group of 

microorganisms is E. coli. Most types of E. coli are harmless. Nonetheless, some kinds of E. 

coli can cause serious illnesses like diarrhea, urinary infections, pneumonia, and other 

illnesses (Jamshidi et al., 2016). 

There have been a number of outbreaks reported universally that have been related with the 

percentage of consumption of vegetables in leafy green contaminated by E. coli (Jamshidi et 

al, 2015; Nicolaï et al., 2014; Zhang et al, 2010). Besides, lettuce is probably presented as the 

rank one of consumption in leafy green vegetables, which cultivated all over the world (Lu et 

al., 2013). In Iran, all lettuce types have about 528.7K tons (yearly) of the total volume of 

leafy vegetables produce in the world (Lu et al., 2013). Other than this, because lettuces like 

other fresh vegetables are served raw, it is possibly to be spoilage by E. coli. 

Most of the techniques for microbial evaluation are destructive, time-consuming, require 

skilled laborers, lab equipment or materials which make it expensive (Jamshidi et al., 2015). 

Thus, it is important to develop non-destructive, accurate, quick and most important valid 

detection method for microbial contamination. 

In recent years, there have been growing research works in developing non-destructive 

methods especially optical-based methods for evaluation external and/or internal quality 

features of different food products.  

Spectroscopy and spectral imaging technologies have been evaluated for non-destructive 

quality evaluation of food products. These methods play important responsibilities in post-

harvest management. In addition, these up-to-date techniques are also increasingly being 

explored and recommended for microbial detection and evaluation of food quality in both 

physical and chemical features (Foley et al., 1998). 

All of the different types of spectroscopy techniques can be accomplished in three 

reflectance, transmission, or fluorescence modes. One of the most common mode is 

reflectance and usually use in the Vis/NIR (400-1000 nm) or NIR (1000-1700 nm) range. 

This range of wavelength can be utilized to detect invisible defects, contaminants like 

microbial, biological, fungal infection, and physical quality features of wide ranges of 

products like fruits, vegetables and meat products (André & Lawler, 2003; Williams & 

Norris, 2001). Fluorescence spectroscopy is utilized in the dairy production (Gowen  et al, 

2007) to detect facial contamination in food, or botanical tissue which contains chlorophyll 

(Wu & Sun, 2013; Panagou et al., 2014) . Online assessment of principal concentrations and 

internal defects of foods also applied by transmission imaging (Park et al., 2011). A main 

disadvantage of spectroscopy is that, due to undesired signals or noises, the 

qualitative/quantitative analysis of the original spectral data requires different pre-processing 

methods (Wang et al., 2014), to decrease numerous useless signals (Zoubir, 2012). 

 

 

 



 

  

 

Spectroscopy is used to evaluate the microbial properties of different products like beef, 

Pork, chicken, fish, Milk, cheese, and apple juice (Stewart et al, 2012). Reviews have shown 

that fewer studies have been done on vegetables. 

In the invistigation reported using Fourier Transform Infrared (FTIR) spectroscopy for 

evaluation of being Escherichia coli K-12 in baby spinach. The results showed that FTIR 

could detect and evaluate E. coli K-12 in extracts of baby spinach with approximate detection 

of 100 CFU/mL in five minute (Wang et al, 2010). Using near infrared (NIR) spectroscopy to 

quantity the amount of bacterial contamination in fresh cabbage investigated by suthiluk et al 

(2008) Two calibration equations by PLS method were developed: both from spectra of the 

saline solutions which were used to wash the entire cabbage samples and only the outer 

surface of the sample, respectively. The two equations using the wavelength region were 

equal. Also, accurate SEPs = 0.46 and CFU = 0.44 log (g−1) were reported (Sutiluk et al, 

2008). 

Based on our knowledge, there is no announced investigation on detection of E. coli 

infected lettuce by the Vis/NIR spectroscopy technique. The main aims of this investigate 

were (1) develop a non-destructive and valid method for E. coli microbial load detection in 

lettuce, and (2) safety assessment of lettuce samples based on E. coli load using the Vis/NIR 

spectra. 

 

2. Material and methods 

2.1. Sample preparation (Reference measurements) 

 

Lettuce samples were freshly purchased on day of test from local market in Karaj, Iran. 

The number of samples were at least 200 lettuce leaves to formulate reliable and suitable 

models for detecting contamination of the product based on the spectral information of the 

samples. 

According to the main goal of the research, several sample categories were needed: Safe 

samples (no contamination), and unsafe samples with different concentrations of 

contamination. The accepted level for E. coli in ready to eat lettuce is zero (Iranian National 

Standards Organization, 2018). .  E. coli ATCC 8739 was obtained from the Research Center 

for Microbial Technologies and Products, University of Tehran, Tehran, Iran. E. coli ATCC 

8739 was grown for 24 h in nutrient agar at 37 °C. To acquire 9 levels of E. coli solutions 

which start from 101 to 109 CFU/mL, Growth medium was consecutively diluted in sterilized 

0.1% peptone water. Due to the inappropriate nature of all the microorganisms in the lettuces, 

the index of total microbial count is mainly considered as a microbial quality index (microbial 

load), which includes the total number of microbes. The E. Coli solution injected with the 

different microbial population in samples with various concentrations (0/1, 0/2, 0/3 ml). The 

population of E. coli after counting was expressed as logarithm of colony forming units 

(CFU) per milliliter (C0.1 = 4.5 log CFU/mL, C0.2 = 6.67 log CFU/mL and C0.3 = 8.91 log 

CFU/mL). For each contaminated sample, spectra were taken as a safe sample from another 

leaf of same lettuce  which treated with solution without any microbial population. Microbial 

tests were carried out in the laboratory of microbiology located at Agricultural Engineering 

Research Institute, Karaj, Iran. 



 

  

 

 

2.2. Vis/NIR measurements 

 

Spectra of the Vis/NIR from samples were acquired at a steady level room temperature and 

humidity. A green-wave spectrometer (StellarNet Inc, Florida, USA) with a highly sensitive 

CCD detector with 2048 element ) signal to noise ratio: 400:1) was used with fiber optic 

coupled instruments for measurements in 350-1100 nm wavelength range with 1.6 nm 

resolution. The data were transferred to the lab top by the SpectraWiz software (StellarNet 

Inc, Florida, USA). 

The spectrometer was calibrated every 20 min. Before spectra acquisition of the both blank 

and the contaminated lettuce. To calculate the relative of reflectance, spectra of white and 

dark reference were taken. Spectra were recorded in the interactance mode at the range of 

350–1100 nm. In addition, three reflectance spectra were captured at three different areas for 

each leaf by random, and the averaged spectrum of three spectra as the reflectance (𝑅) was 

used for analysis. Finally, all of the data transformed to absorbance (log 1/R). 

2.3. Data analysis  

Different Pre-processing techniques on Vis/NIR spectra were considered to remove all 

unnecessary data in the spectra and develop the following classification model or multivariate 

regression analysis (Elmasry & Nakauchi, 2016). To this end, standard normal variate (SNV) 

with multiplicative scatter correction (MSC) were used to remove multiplicative and 

additive scatter effects, respectively. Also, 1st and 2nd derivatives of the spectrum (D1, D2) 

based on Savitzky–Golay smoothing filtering with 5 points and two polynomial order were 

accomplished to enhance the spectral resolution (Elmasry et al., 2012). Before any analysis, 

two segments of the spectrum from the whole wavenumber range were removed to diminish 

the low value of these signals: 350-450 and 994-1100. To developing the classification 

models, Principal component analysis method (PCA) was conducted to recognize outliers in 

data and patterns or relationships between variables and groups.  

Partial least squares discriminant analysis (PLS-DA) as a supervised method was used to 

classify of the lettuce samples into the safe and unsafe groups. In order to avoid bias in 

selecting subset and estimate the performance of a predictive model, the calibration and 

validation set was comprised of 75% and 25% of the total samples, respectively. Therefore, 

the calibration and validation sets were created with 144 (72 safe sample and 72 unsafe 

samples) and 47 (23 safe samples and 24 unsafe samples) separate samples. The samples 

belonging to validation set were randomly choosed by picking five rows sample after 

counting every five sample, making sure that both sets of data at least some sample of each 

group names was included.  

After the PCA and PLS-DA models, full cross validation, sometimes called rotation 

estimation, or out-of-sample testing, as validation technique was used. Statistically significant 

of developed PLS-DA classification models was evaluated with standard error of cross-

validation (SECV) and the percent correctly classified of validation and calibration sets. In 

general, an acceptable model should have lowest Root Mean Square Error of Prediction 

(RMSEP) and Root Mean Squares Error Calibration (RMSEC) with highest coefficient of 

determination (𝑅2) value. Therefore, the best model was selected taking into account the  



 

  

 

 

standard error of cross-validation (SECV) led to minimum and the percentage variation 

explained by the regression model (R2) led to maximum.  

The Unscrambler software X10.3 (CAMO Software, Oslo, Norway) was used for all 

analyses. 

3. Result and Discussion 

3.1. PCA model 

 

Before any pre-processing methods, Outliers were removed from all of the data to reduce 

the contribution of potential outliers, which have negative influence on model development 

[36, 37]. After running principal component analysis (PCA) with the algorithm of nonlinear 

iterative partial least squares (NIPALS), 9 outliers were detected and removed. To interpret of 

grouping between samples (patterns and outliers), the score plot, which shows the projected 

values of the origin data onto the axes of principal component was used. The score plot 

of first principal component (PC1) and second principal component (PC2) from all lettuce 

samples is shown in Figure 1. In this investigation, the score plot labels show that PC1 

explains 89% and PC2 6% of the total variance in the data.  

On one hand, Figure 1 Shows the lettuce samples can be separated into two distinct groups 

of safe and unsafe lettuce samples with PC1 and PC2, placing unsafe samples in the left side 

of PC1 and PC2, and safe samples in the right side of PC1 and PC2. However, it is obvious 

there are some overlap between the samples belonging to safe group and unsafe with 0.1 

concentration of microbial solution due to their similarity spectrum ranges. In regards to 

loading plot (Figure 2), the main wavelength bands were those from 430 to 680 nm.  This 

means that the optimal sensitivity for E. coli determination is given in this region. 

Photosynthetic organisms contain light-absorbing molecules called pigments that absorb only 

specific wavelengths of visible light could be seen between ranges of 520 to 550 and related 

to chlorophyll a. (Jamshidi et al., 2015). 

On the other hand, the Q-residual-Hotelling's T2 plot indicates the outliers in Figure 3. The 

Q statistic indicates large leverage and high residual variance of outliers. So, it describes the 

distance of sample to model. The Hotteling’s T2 on the lateral axis describes how each 

samples is defined by the model. The red line on the Q-residual-Hotelling's T2 plot shows 

limitation on the 5% level of significance. The samples with a circle around them beyond 

those limited lines are recognized as the detected outliers. Also, the plot was conducted with 

the third PC where total residual variance goes to zero for with minimum of components 

which could be used in PCA model (Aske et al., 2001). 

 

 

 

 

 



 

  

 

 

 
Figure 1: The score plot Score plot of first principal component (PC1) and second principal component 

(PC2) from all lettuce samples as results of principal component analysis  

(The samples with a circle around them are outliers). 

 

 

 

 

 

 

 

 
Figure 2: The loading Plot of the first principal component  

 

 

 

 



 

  

 
Figure 3: The Plot of influence from the lettuce samples (The samples with a circle around them are outliers). 

 

 

 

 

3.2. PLS-DA Model 

 

Partial least squares-discriminant analysis (PLS-DA) is known as a supervised qualitative 

method which can be applied for projecting modelling as well as for classification of variables 

[38, 39]. Results of PLS-DA model makes the same outcomes of Euclidean distance to 

centroids (EDC) which is as a classic method, and also it could be used as the method of 

linear discriminant analysis (LDA) (Gómez et al, 2006). In this paper, we used the PLS‐ DA 

to classify lettuce samples in more than one group which are safe and unsafe groups. After 

running PCA as a primary exploratory investigation of spectra, the models were tested by 

splitting the total 191 of samples into a training and test sets.  

The statistical parameters obtained from PLS-DA models with various pre-processing 

spectra techniques to explore the lettuce samples with the presence of microbial 

contamination coming from contaminated lettuces with E. coli, are shown in Table 1. Some of 

the established models of calibration had not a great potential to classify the lettuces into two 

different classes. The best calibration models is developed with standard normal variate and 

second derivative )SNV+D2(, as well as standard normal variate and first derivative 

(SNV+D1) with lowest standard error of cross-validation (SECV = 0.257) and highest 

coefficient of determination (r2= 93%). After using cross-validation method for the 

calibration set, 100% accuracy was found with a perfect classification. All reference lettuce 

samples were classified correctly for developed model using the SNV+D2 pre-processing 

technique. In calibration set, there were 23 safe group samples which all of them were 

correctly classified. In addition, in 24 samples of unsafe group only two samples are 

incorrectly classified. In consequence, the overall proportion of sample classification of 

unsafe group was 91.6%.  

 

 



 

  

 

 

Table 1: The statistical parameters obtained from PLS-DA models various pre-processing spectra methods. 

  Calibration 

set 

   Prediction 

set 

 

  Correctly 

classified (%) 

   Correctly   

classified (%) 

 

Preprocessing    

methods 

LVs R2 SECV  Total safe unsafe 

MSC 7 70% 0.567  86.11 100 72 

SNV 3 72% 0.537  86.11 100 72 

D1 7 67% 0.582  80.55 100 62 

D2 5 72% 0.525  86.11 100 72 

MSC+D1 5 83% 0.416  86.11 100 73 

MSC+D2 6 81% 0.397  86.11 100 73 

SNV+D1 7 93% 0.269  95.8 100 91.6 

SNV+D2 7 93% 0.257  95.8 100 91.6 

                                                    

Predicted outputs of the best model of calibration with measuring projected deviation are 

shown in Figure 4. In unscramble, there were 2 groups of the samples in prediction. The first 

one which contains 23 samples and the second one contains 24 of unknown samples. All 

samples of first group have predicted values close to 1 classifying these as belonging to group 

“safe”. The second-group samples have a predicted value around -1 which assigns them to 

group “unsafe”. For sample of s16-c0.1 (sample sixteen with 0.1 ml of microbial 

concentration) and s13-c0.1 (sample thirteen with 0.1 ml of microbial concentration), the 

predictions are close to 0, and have high uncertainties. It could be concluded that these 

samples cannot belong to any of the distinct groups, because of the measured projected 

deviation (uncertainty) are close the prediction value includes 0 in the plot. 

 

Figure 4: Predicted outputs of the best model of calibration with measuring projected deviation (the 

projected response for the new samples shown as a horizontal red line. The blue box around the projected value 

spans the deviation in both directions and is an estimate of the projection uncertainty). 
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The results showed the possibility using Vis/NIR spectroscopy in the wavelength range 

from 450 to 994 nm for detection and evaluation of E. coli ATCC 8739 contamination in 

lettuce. As we see, there was close relation between safe samples and unsafe samples with 0.1 

ml of E. coli solution. Therefore, the ability of Vis/NIR spectroscopy to definitive detection of 

E. coli contamination was conformed in those lettuces which have contamination above the 

0.1 ml concentration. 

Besides, PLS-DA, achieved good performance for nondestructive detection of 

contamination in intact lettuces that contain three different levels of the E. coli concentration. 

The decrease and increase of the microbial population amount in lettuce samples cause a 

complex process in lettuce and it effect on chemical components of lettuce. Therefore, the 

relationship between the changes of chemical components and the different E. coli content are 

very complicated and are most likely to demonstrate a non-linear relationship. 

 

4. Conclusion 

 

In summary, the results of the current investigate proved using Vis/NIR spectroscopy in 

the wavelength range from 450 to 990 nm to rapid and accurate detection of E. coli ATCC 

8739 affected in fresh lettuce leaves.  

Classification the intact lettuce leaves spoiled with E. coli loads in two groups of safe and 

unsafe was performed by PLS-DA in different pre-processing methods. The optimum results 

achieved a Root Mean Squared Error Calibration (RMSEC) = 0.257% and correlation 

coefficient (rc) = 0.93 with standard normal variation (SNV) and second derivate (D2) pre-

processing methods. It could be concluded that there is good investigative accuracy in 

detection of E. coli with minimal errors at a concentration >0.1 mL in fresh lettuce leaf. 

Therefore, the Vis/NIR spectroscopy method could be used for non-destructive detection of 

the lettuces with regard to contaminate by E. coli in online applications of food safety. 

Further, the results were recommended using Vis/NIR spectroscopy technique as a fast and 

simple way to detect E. coli in other types of vegetable for further identifying. 

This shows that the NIR range was unable to detect the cell present in the samples at the early 

growth stage. It could be concluded When E. coli ATCC 8739 cell concentration reached 

bigger than 6.67 log CFU/mL, unsafe samples become statistically classified from the safe 

samples. Which may be attributed to the cell components or metabolic products. 
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